Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

ФаАссен М.В.

ФГБУ "Эндокринологический научный центр" Минздрава России, Москва

RAS-патии: синдром Нунан и другие родственные заболевания. Обзор литературы

Авторы:

ФаАссен М.В.

Подробнее об авторах

Журнал: Проблемы эндокринологии. 2014;60(6): 45‑52

Просмотров: 20816

Загрузок: 444


Как цитировать:

ФаАссен М.В. RAS-патии: синдром Нунан и другие родственные заболевания. Обзор литературы. Проблемы эндокринологии. 2014;60(6):45‑52.
FaAssen MV. RAS-pathies: Noonan syndrome and other related diseases. The literature review. Problems of Endocrinology. 2014;60(6):45‑52. (In Russ.)
https://doi.org/10.14341/probl201460645-52

Рекомендуем статьи по данной теме:
Ос­трая рас­сла­ивающая анев­риз­ма аор­ты с раз­ры­вом у па­ци­ен­та с син­дро­мом Ну­на­на пос­ле пов­тор­но­го ин­фи­ци­ро­ва­ния SARS-CoV-2. Про­фи­лак­ти­чес­кая ме­ди­ци­на. 2024;(8):73-75

Более 40 лет назад детским кардиологом Жаклин Нунан был описан синдром, фенотипически похожий на синдром Шерешевского-Тернера (СШТ) - врожденные пороки сердца (чаще правосторонние, в отличие от СШТ), дисморфные черты лица, низкопосаженные и ротированные кзади ушные раковины, крыловидные складки шеи, деформация грудной клетки. У мальчиков иногда встречался крипторхизм. На сегодняшний день известно, что синдром Нунан обусловлен мутациями нескольких генов (PTPN11, SOS1, KRAS и др.) и относится к группе сходных по патогенезу заболеваниями - RAS-патиям.

RAS-патии как класс наследственных заболеваний

RAS-патии - это класс наследственных заболеваний, имеющих в основе нарушения регуляции проведения внутриклеточного сигнала по Ras/MAPK-пути (Ras/митоген-активируемая протеинкиназа; Ras/mitogen-activated protein kinase). Данный путь является одним из решающих в развитии клетки и организма в целом, поскольку регулирует такие важные процессы, как клеточный цикл, рост и дифференциация клетки [1]. К генам семейства RAS относятся KRAS, NRAS и HRAS. Они кодируют одноименные белки - маленькие гуанозинтрифосфатазы (ГТФазы), которые являются критически важными проводниками внутриклеточного сигнала. Их активация происходит после взаимодействия факторов роста с несколькими типами рецепторов - тирозинкиназными рецепторами, G-белок-связанными рецепторами, цитокиновыми рецепторами, внеклеточными матричными рецепторами. После активации запускается молекулярный каскад, в котором участвуют несколько белков (CBL, SHP2, GRB2, SOS1), что приводит к увеличению концентрации гуанозинтрифосфат(ГТФ)-связанных активных Ras-белков. Активированные белки Ras, в свою очередь, активируют MAP-киназы: CRAF и BRAF, далее MEK1 и MEK2, и в итоге ERK1 и ERK2, которые являются главными эффекторами данного пути и контролируют активность как внутриядерных, так и цитозольных белков (транскрипционных факторов, мембранных белков, белковых киназ и др.) [2].

Большинство мутаций генов, кодирующих компоненты данного пути, приводят к его чрезмерной неконтролируемой активности. Неудивительно, что в 20% всех онкогенных заболеваний обнаруживаются соматические мутации генов данной группы [3, 4]. В связи с этим RAS-патии относят к заболеваниям с повышенным риском онкологических нарушений. Кроме того, учитывая, что данный путь имеет важнейшее значение для роста и дифференциации клетки, неудивительно, что нарушения в нем имеют системный, иногда тяжелый, характер. Каждое заболевание данной группы характеризуется своим ярким фенотипом, однако есть и много общих признаков: краниофациальные нарушения, пороки развития сердечно-сосудистой системы, аномалии опорно-двигательного аппарата и кожных покровов, патологии глаз и зрения, нарушения нейрокогнитивного развития и увеличенный риск онкологических заболеваний. Данная группа заболеваний считается одной из наиболее распространенных из наследуемых пороков развития (около 1 на 1000 новорожденных) [2]. Первым заболеванием, отнесенным к данной группе, был нейрофиброматоз 1-го типа [5], причиной чему явилась найденная мутация в гене NF1. Этот ген является составляющей Ras/MAPK-пути. Далее последовал ряд других заболеваний: синдром Нунан (гены PTPN11, SOS1, RAF1, KRAS, NRAS, HRAS, BRAF, SHOC2, CBL, RIT1), синдром Нунан с множественными лентиго или синдром LEOPARD (гены PTPN11, RAF1), синдром капиллярной и артериовенозной мальформации (ген RASA1), синдром Костелло (ген HRAS), кардио-фацио-кожный синдром (КФКС; гены KRAS, BRAF, MAP2K1, MAP2K2) и синдром Легиуса (ген SPRED1). С точки зрения диффернциальной диагностики идиопатической низкорослости, наибольший интерес представляет синдром Нунан.

Синдром Нунан

Синдром Нунан (OMIM 163950) характеризуется низким ростом, определенным фенотипом, деформацией грудной клетки и пороками сердца. Частота встречаемости - 1:1000-2500 рожденных живыми. Встречаются спорадические и семейные варианты. Наследуется, в основном, аутосомно-доминантно. К типичным стигмам лица относятся: низко посаженные уши с развернутыми вперед мочками, светлые (синие, сине-зеленые) глаза, гипертелоризм и антимонголоидный разрез глаз, птоз, эпикант, брови «домиком», широкая уплощенная переносица, широкий фильтр, высокое готическое небо, короткая шея с низким ростом волос, возможны крыловидные складки шеи, лимфатические дисплазии, крипторхизм у мальчиков, геморрагические диатезы. Из нарушений сердечно-сосудистой системы характерен стеноз клапана легочной артерии, гипертрофическая кардиомиопатия (в отличие от СШТ, при котором пороки сердечно-сосудистой системы левосторонние). Возможна задержка когнитивного развития. Следует помнить, что пациенты с синдромом Нунан имеют повышенный риск онкологических заболеваний: нейробластомы, острой лимфобластной лейкемии, низкодифференцированной глиомы, рабдосаркомы, ювенильной миеломоноцитарной лейкемии [2, 6, 7]. Данный фенотип широко вариабелен и в течение жизни претерпевает изменения, так что с возрастом яркость признаков несколько стирается.

Масса тела детей с синдромом Нунан при рождении обычно в пределах нормы, длина тела может быть немного снижена (около –1,1 SDS). Дефицит роста быстро увеличивается в первые годы жизни (ниже 3-й процентили) и достигает наибольшей выраженности в пубертатный период из-за сниженного или отсроченного пубертатного скачка [8], что может сопровождаться отставанием костного созревания. Несмотря на это, около 50% пациентов с синдромом Нунан достигают вполне нормальных значений роста и массы тела благодаря нагоняющему росту во время пубертата, что следует учитывать при решении вопроса о назначении терапии. В исследовании A. Malaquias и соавт. [9] средний рост для женщин составил 148,4 см (–2,4 SDS), а для мужчин - 157,4 см (–2,2 SDS). Выявлены некоторые корреляции между генотипом и степенью отставания в росте. Так, у индивидов с мутацией генов SHOC2 и RAF1 обнаружен наибольший дефицит роста в постнатальном периоде. На сегодняшний день существуют специальные перцентильные таблицы для пациентов с синдромом Нунан и родственных синдромов.

Данные о недостаточности гормона роста и нейросекреторной дисфункции у пациентов с синдромом Нунан противоречивы [10, 11]. Клинические проявления широко варьируют в зависимости от генетической природы. Часто встречаются стертые формы, задержка роста при которых может расцениваться как вариант идиопатической низкорослости. В таком случае необходимо более углубленное гормональное и молекулярно-генетическое обследование.

Для постановки диагноза применяют критерии I. van der Burgt и соавт. [12], которые состоят из больших и малых признаков. Диагноз ставят при сочетании типичных стигм лица с 1 большим или 2 малыми признаками, или при сочетании отдельных стигм лица с 2 большими или 3 малыми признаками. Диагноз может быть заподозрен и во время эмбрионального развития при наличии гигром или широкой шейной складки, особенно в сочетании с другими признаками заболевания, такими как пороки развития сердечно-сосудистой системы.

При генетическом исследовании примерно в 75% случаев удается найти и определить мутантный ген. Это значит, что отсутствие положительного результата не исключает диагноз [8]. На сегодняшний день известны 9 генов, мутация которых приводит к клинической картине синдрома Нунан: PTPN11 [13], SOS1 [14,15], RAF1 [16, 17], KRAS [18], NRAS [19], BRAF [20], SHOC2 [21, 22], CBL [23, 24], RIT1 [25]. Перечисленные гены кодируют компоненты или белки Ras/MAPK-пути в разной степени приводят к его активации. Клиническая картина при всех мутациях очень схожа, но есть и некоторые особенности (см. ниже).

Нейрофиброматоз 1-го типа

Нейрофиброматоз 1-го типа (НФ1, OMIM 162200) был первым заболеванием, при котором была обнаружена мутация компонента Ras/MAPK-пути, а именно гена NF1. Данное заболевание имеет аутосомно-доминантный тип наследования; при этом около половины мутаций наследуются от одного из родителей, другая половина - мутации de novo. Частота заболеваемости оценивается как 1 случай на 3000 новорожденных. В 1978 г. были установленны диагностические критерии, на основании которых данный диагноз может быть поставлен при обнаружении минимум двух из следующих симптомов: пятна цвета «кофе с молоком», пятна типа «веснушчатые грозди» в кожных складках, узелки Лиша, нейрофибромы, остеодисплазия, глиома зрительного нерва и больной родственник первого колена (родители, сибсы) [26]. Перечисленные симптомы являются наиболее частыми для данного заболевания, но возможны и другие проявления, которые в разной комбинации могут осложнять диагностику: аномалии строения сердца (из которых 25% - стеноз легочной артерии), сердечно-сосудистые заболевания, васкулопатии, артериальная гипертензия, недостаточность витамина D, преждевременное половое развитие, структурные нарушения головного мозга, эпилептические припадки и когнитивные нарушения. Низкорослость может быть одним из проявлений скелетных дисплазий, даже в отсутствие других признаков (сколиоз, врожденные дефекты костей, макроцефалия, дисплазия сфеноидальной кости), поэтому мониторинг состояния скелета и роста ребенка с помощью кривых роста в данном случае имеет особое значение. Внешний вид больного может напоминать фенотип пациентов с синдромом Нунан из-за схожих краниофациальных стигм дисэмбриогенеза [2, 26]. Как при всех заболеваниях данной группы, у пациентов с НФ1 имеется предрасположенность к опухолевым заболеваниям. К «детским» опухолям относятся глиома зрительного нерва, рабдомиосаркома, нейробластома и ювенильная миеломоноцитарная лейкемия (ЮММЛ). Для взрослых пациентов характерны скорее гастроинтестинальные стромальные опухоли, злокачественные опухоли нервной оболочки, соматостатиномы, феохромоцитомы и рак молочных желез.

Синдром Нунан с множественными лентиго (синдром LEOPARD)

Синдром LEOPARD (Lentiginosis, ECG conduction abnormalities, Ocular hypertelorism, Pulmonary stenosis, Abnormal genitalia, mental physical Retardation and Deafness, OMIM 151100), или синдром Нунан с множественными лентиго (СНМЛ, Noonan Syndrome with Multiple Lentigines - NSML), как его принято называть в новейшей западной литературе [2], является редким наследственным заболеванием с аутосомно-доминантным типом наследования. СНМЛ и синдром Нунан - это аллельные нарушения, вызванные разными мутациями в одних и тех же генах - PTPN11, RAF1 и BRAF [8, 20]. Краниофациальные изменения схожи с таковыми при синдроме Нунан, однако обычно менее выражены, а шейные складки часто отсутствуют. Множественные лентиго имеют вид плоских, черно-коричневых пигментных пятен небольшого размера, располагаются обычно на шее и верхней части туловища, могут появиться с первых лет или месяцев жизни и достигать к пубертатному возрасту многих тысяч. Иногда множественным лентиго предшествуют пятна цвета «кофе с молоком», которые могут появиться в первые месяцы жизни. Изменения на электрокардиограмме (самое частое из которых - вертикальная ось сердца без видимых органических нарушений), прогрессирующие с возрастом нарушения проводимости, гипертрофическая кардиомиопатия (около 85% всех сердечных нарушений) и стеноз клапана легочной артерии - проявляются примерно у половины пациентов, часто уже в грудничковом возрасте и прогрессируют с возрастом [27].

Масса тела и рост при рождении, как правило, в норме; задержка физического развития, в первую очередь задержка роста (рост ниже 3-й процентили), наблюдается у 25% пациентов, а в 85% случаев конечный рост не превышает 25-й процентили [8]. Нарушение строения гениталий чаще манифестируется двусторонним крипторхизмом (около 50% случаев), но возможны также гипоспадия и гипоплазия наружных половых органов у мальчиков. У девочек может встречаться гипоплазия яичников и задержка пубертата [27]. Наиболее характерными опухолевыми заболеваниями для данного синдрома считаются нейробластомы, острая миелоидная лейкемия и острая В-клеточная лимфобластная лейкемия [6].

Проведение генетического анализа возможно на нескольких биологических материалах: кровь, ворсинки хориона или амниотическая жидкость. Таким образом, возможна пренатальная диагностика, особенно при обнаружении левосторонней гипертрофической кардиомиопатии у плода.

Синдром капиллярной и артериовенозной мальформации (СК-АВМ)

СМ-АВМ (Capillary Malformation-Arteriovenous Malformation Syndrome) - это наследственное заболевание с аутосомно-доминантным типом наследования, причиной которого является инактивирующая гетерозиготная мутация в гене RASA1. Клинически данный синдром характеризуется мультифокальными артериальными мальформациями, артериовенозными мальформациями и фистулами. На сегодняшний день пациенты с подтвержденным диагнозом единичны, поэтому четкое определение диагностических критериев затруднено. N. Revencu и соавт. [28, 29] считают, что наиболее важными фенотипическими признаками являются артериовенозные мальформации с высоким риском быстрого кровоизлияния (локализованные в толще кожи, подкожно, внутримышечно, внутрикостно и в центральной нервной системе) и мелкие кожные депигментации с красной точкой по центру. Другими клиническими признаками могут быть аномалии строения сердечно-сосудистой системы (например, тетрада Фалло), дефекты межжелудочковой и межпредсердной перегородок и нарушения клапанного аппарата [2]. Чаще у пациента имеется родитель, от которого данное заболевание унаследовано, однако примерно 30% случаев являются результатом мутаций de novo.

Высокая частота артериовенозных мальформаций с высоким риском кровоизлияния требует тщательного обследования и регулярного наблюдения [28]. Предрасположенность к опухолевым заболеваниям у пациентов с данным синдромом сходна с таковой у пациентов с НФ1.

Синдром Костелло

Синдром Костелло (OMIM 218040) относится к редким заболеваниям класса Ras-патий. Причиной являются мутации гена HRAS. Диагностика возможна уже в пренатальном периоде при появлении таких признаков, как многоводие и гипертрофическая кардиомиопатия. Часты случаи преждевременных родов. Характерный фенотип заметен уже при рождении: общая грубоватость черт лица, макроцефалия, складки эпиканта, опущенные внешние углы глаз, низкопосаженные ротированные кзади уши с большими козелками и толстыми мочками, иногда толстые губы. Как и при других Ras-патиях, при синдроме Костелло высока частота сердечных аномалий, в особенности гипертрофической кардиомиопатии, аномалии строения клапанного аппарата, дефектов межжелудочковой и межпредсердной перегородок и аритмий. Несмотря на нормальную (для гестационного возраста) массу тела при рождении, физическое развитие чаще нарушено вследствие сложностей с кормлением в грудничковом возрасте и гастроинтестинальных проблем - нарушений моторики кишечника, частых запоров. Характерны такие кожные проявления, как мягкая тонкая кожа с повышенной складчатостью, особенно на тыльной стороне ладоней и стоп, глубокие ладонные складки [30, 31], что помогает при дифференциальной диагностике. Другим отличительным признаком синдрома Костелло является предрасположенность пациентов к папилломатозу кожи, который можно наблюдать в 72% случаев [31]. К наиболее частым опухолевым заболеваниям относятся рабдомиосаркома (в том числе эмбриональная), нейробластома и карциномы переходного эпителия (чаще всего мочевого пузыря) [2, 6].

Кардио-фацио-кожный синдром (КФКС)

Данный синдром (OMIM 115150) вызван мутациями в генах KRAS, BRAF, MAP2K1 и MAP2K2 [30, 32-34], большинство из которых возникает de novo. Синдром имеет аутосомно-доминантный тип наследования.

Клиническая картина схожа с таковой при синдромах Нунан и Костелло. При рождении заметна макроцефалия, опущенные углы глаз, низкопосаженные, ротированные кзади ушные раковины, готическое небо. Имеются и дерматологические признаки, отличающиеся от таковых при синдроме Костелло, а именно: редкие вьющиеся волосы, редкие брови и ресницы, гиперкератоз, ихтиоз, гемангиомы и множественные невусы, с возрастом увеличивающиеся в числе. К кардиологическим нарушениям относятся стеноз клапана легочной артерии, дефекты перегородки и гипертрофическая кардиомиопатия. Характерными симптомами являются нарушения опорно-двигательного аппарата и зрительной системы (косоглазие, нистагм, миопия, гиперметропия, астигматизм).

Как и при синдроме Костелло, задержка физического развития при КФКС в первых месяцах жизни связана с нарушениями желудочно-кишечного тракта (рефлюкс, рвота, запоры, затруднения кормления). Задержка когнитивного развития и неврологические нарушения (эпиприпадки) также достаточно характерны [35]. Пациенты с КФКС имеют наименьшую (по сравнению с другими Ras-патиями) предрасположенность к опухолевым заболеваниям. С наибольшей частотой встречаются острая лимфобластная лейкемия, неходжкинская лимфома, гепатобластома и рабдомиосаркома [6, 7].

Синдром Легиуса

Синдром Легиуса (известный также под названием нейрофиброматоз-подобный синдром Нунан - neurofibromatosis-Noonan syndrome, NFNS, OMIM 601321), вызван мутациями гена SPRED1 и имеет аутосомно-доминантный тип наследования [2, 8]. На сегодняшний день - это новейший синдром, относимый к классу Ras-патий.

К характерным кожным проявлениям, как и при НФ1, относятся пятна цвета «кофе с молоком» и пятна типа «веснушчатые грозди» в кожных складках (особенно подмышечные впадины и паховые складки). В отличие от НФ1 для синдрома Легиуса узелки Лиша, опухоли зрительной системы, аномалии развития скелетной системы, опухоли оболочки нервных клеток нехарактерны [36]. Данные о наличии нейрофибром противоречивы [8, 36]. К симптомам, схожими с таковыми при синдроме Нунан, относятся: характерный внешний вид со стигмами дисэмбриогенеза, вдавленная грудина, когнитивные нарушения (задержка психомоторного развития, синдром дефицита внимания, аутистичное поведение). Могут встречаться полидактилия и множественные липомы, что отличает данный синдром от других Ras-патий [36]. Опухолевые заболевания выявляются редко (острая монобластная лейкемия, рак молочной железы, шваннома и др.).

Генетика Ras-патий

PTPN11

Наиболее частой мутацией при синдроме Нунан является мутация гена белковой тирозиновой фосфатазы нерецепторного типа 11 (protein tyrosine phosphatase, non-receptor type 11 - PTPN11) (OMIM 176876), которая встречается более чем в 50% случаев [2]. Данный ген кодирует белок SHP2 - тирозиновую фосфатазу, которая находится в цитоплазме и модулирует дальнейший RAS-каскад. Миссенс-мутации гена и молекулярные изменения белка SHP2 усиливают сигналлинг Ras/MAPK-пути за счет потери возможности перевода белка SHP2 в неактивное состояние или повышения его сродства к дальнейшим эффекторам. Данная мутация наиболее характерна для пациентов со стенозом клапана легочной артерии и задержкой роста [8]. Гипертрофическая кардиомиопатия и задержка психического развития для этой мутации менее характерны, хотя возможны.

Как уже отмечалось, важно помнить, что пациенты с синдромом Нунан имеют предрасположенность к онкологическим заболеваниям. Известны также случаи ювенильной миеломоноцитарной лейкемии, при которой часто определяется именно мутация гена PTPN11 [7]. Течение лейкемии может быть чрезвычайно разнообразным: от острого агрессивного до спонтанного выздоровления [8].

SOS1

Вторым по частоте геном, в котором определяются мутации при синдроме Нунан (примерно в 10-28% случаев), является ген SOS1 [8, 15]. Чаще всего - это миссенс-мутации. Ген SOS1 (OMIM 182530) кодирует одноименный белок, выполняющий функцию фактора обмена гуаниновых нуклеотидов (guanine nucleotide-exchange factor, GEF). Эта функция заключается в катализе отщепления гуанозиндифосфата (ГДФ) от Ras, облегчающего переход Ras из неактивного в активное состояние для дальнейшей передачи сигнала по Ras/MAPK-пути. Пациенты с гетерозиготной мутацией имеют достаточно характерный, но относительно мягкий фенотип, в большей степени проявляющийся эктодермальными нарушениями, в то время как дефицит роста и задержка умственного развития проявляются реже. Иногда могут наблюдаться дисморфные черты лица, что важно для дифференциальной диагностики с КФКС, при котором данные о наличии мутации гена SOS1 противоречивы [15, 37, 38]. Кроме того, у 2 пациентов с данной мутацией наблюдались более тяжелые нарушения дыхательной и пищеварительной систем: лимфангиэктаз, врожденные плевральные выпоты, ларингомаляция и нарушения питания [39].

KRAS, HRAS и NRAS

Одноименные белки, кодируемые генами KRAS (OMIM 190070), HRAS (OMIM 190020) и NRAS (OMIM 164790), относятся к мономерным ГТФазам, регуляция активности которых происходит за счет циклической смены ГДФ и ГТФ [40]. Они активируются факторами обмена гуаниновых нуклеотидов (GEF), в том числе SOS1, и инактивируются ГТФаза-активирующими белками (GTPase activating proteins, GAP).

Кроме синдрома Нунан, мутации данных генов были найдены при КФКС (KRAS) и при синдроме Костелло (HRAS). Частота мутаций этих генов при данных заболеваниях достаточно мала (2-5%). Фенотип очень вариабелен [41, 42], что частично объясняется корреляцией между локусом мутации и степенью выраженности Ras/MAPK-активации [18]. Частота мутаций гена NRAS еще более редка (по последним данным, около 0,4%) [19]. Фенотип наиболее близок к синдрому Нунан, однако данная мутация была найдена и при других заболеваниях. Так, описан случай врожденной мутации гена NRAS, клинически проявляющейся аутоиммунным лимфопролиферативным заболеванием [43].

RAF1, BRAF (и ARAF)

Белки RAF1, известные также как CRAF (OMIM 164760), BRAF (OMIM 164757) и ARAF (OMIM 311010) относятся к серин-треониновым киназам, выступающим в роли эффекторов Ras. Их функция заключается в фосфорилировании MEK1 и MEK2, которые далее стимулируют ERK1 и ERK2. Роль в проведении сигнала по Ras/MAPK-пути и способы активации данных белков различны. Так, BRAF имеет намного более выраженную аффинность к MEK. Показательно также, что соматические мутации BRAF часто обнаруживаются при таких онкологических заболеваниях, как меланома, рак щитовидной железы, яичников, колоректальный рак, в то время как мутации RAF1 и ARAF редки в онкологии [8]. Частота мутации гена RAF1 при синдроме Нунан определяется в пределах 5-15%, встречается также при синдроме Легиуса [17]. Фенотипически для данной мутации характерно наличие гипертрофической кардиомиопатии (до 75% случаев в сравнении с 18% при синдроме Нунан с исключением мутации RAF1), низкорослости, множественных невусов, пятен «кофе с молоком», лентиго [44].

Мутации гена BRAF при синдроме Нунан скорее редки (менее 2%) и более характерны для КФКС, при котором их частота достигает 50-75% [32].

У индивидов с синдромом Нунан с данной мутацией к характерным симптомам относятся: отставание в физическом развитии (особенно рост) в неонатальном периоде, нарушения питания, мало- или средневыраженные когнитивные нарушения, гипотония. Множественные невусы и лентиго темного цвета также часты. Напротив, гипертрофическая кардиомиопатия более редка, чем при мутациях гена RAF1, а кожные и неврологические нарушения, кардиологические дефекты, которые характерны для КФКС, практически не встречаются [20].

SHOC2

Относительно недавно была выявлена мутация гена SHOC2 (OMIM 602775) у пациентов с синдромом Нунан, обладающих дополнительным симптомом слабых волос. Некоторыми авторами [8, 22] данный набор клинических признаков выделяется в самостоятельный синдром - Нунан-подобный синдром с симптомом слабых волос (Noonan-like syndrome with loose anagen hair, OMIM 607721). Белок SHOC2 функционально находится между белками Ras и своим эффектором RAF1. Его функция заключается в транслокации RAF1 к плазматической мембране и запуске его каталитической активности. Мутированный белок SHOC2 теряет способность транслокации, что приводит к длительному фосфорилированию RAF1 и продлению активности Ras/MAPK-пути [2, 33]. Частота встречаемости мутации определена в пределах 8,5% [21]. Как уже упоминалось, ярким «индивидуальным» симптомом для данной мутации являются плохо растущие, слабые, легко выпадающие волосы, что отличает таких пациентов от больных с «типичным» синдромом Нунан. Кроме этого, фенотип пациентов относительно характерный: низкорослость (нередко с подтвержденным СТГ-дефицитом), кардиальные нарушения, атопичная кожа (иногда экзема и ихтиоз), выраженное гиперактивное поведение (улучшается с возрастом). Важно отметить, что кардиологические нарушения проявляются чаще в виде дисплазии митрального клапана и нарушений строения перегородки, и частота их при мутации гена SHOC2 выше, чем в общей популяции больных с синдромом Нунан [22]. S. Komatsuzaki и соавт. [21] выявили лейкоцитоз у 1 из 8 пациентов с мутацией гена.

MEK1 (и MEK2)

Мутации генов MEK1 (также известного как MAP2K1, OMIM 176872) и MEK2 (MAP2K2, OMIM 601263) чаще встречаются при КФКС (около 20% случаев), но иногда мутация гена MEK1 встречается и при синдроме Нунан [34]. Продукты транскрипции этих генов - одноименные белки относятся к семейству киназ с двойной специфичностью, функция которых состоит в фосфорилированиии как сериновых, так и треониновых остатков белков ERK [8, 45]. Мутации генов приводят к патологически продленной активации Ras/MAPK-пути. Четких данных о корреляции генотип-фенотип в случае мутации гена MEK1 при синдроме Нунан и родственных заболеваниях не существует, однако очевидно, что фенотип наиболее близок к КФКС [34].

CBL

Мутация гена CBL (Casitas B-lineage lymphoma) при синдроме Нунан выявляется редко - не более чем в 1% случаев [23]. Белки CBL входят в семейство Е3 убиквитинлигаз, которые путем содействия деградации белков отрицательно регулируют внутриклеточную передачу сигнала. CBL способствует присоединению убиквитина к активному рецептору тирозинкиназы, что приводит к интернализации рецептора и его деградации. Кроме того, эти белки выполняют и роль адаптеров, функция которых состоит в формировании больших сигнальных комплексов. Таким образом, происходит регуляция передачи сигнала во времени и пространстве [46, 47]. Клинические проявления при мутации данного гена имеют очень широкий спектр и включают от некоторых до всех признаков синдрома Нунан или Нунан-подобных заболеваний в различных комбинациях, что не позволяет установить четкую корелляцию между мутацией гена и фенотипом [23]. Важно иметь в виду, что мутация в гене CBL ассоциируется с развитием ювенильной миеломоноцитарной лейкемии. Именно при этом заболевании наиболее часто обнаруживаются небольшие участки делеции гена. Однако случаев синдрома Нунан или Нунан-подобных синдромов с развитием данного вида лейкемии не выявлено.

RIT1

Недавно Y. Aoki и соавт. [25] выявили мутации в новом гене путем геномного секвенирования материала 17 из 180 пациентов с синдромом Нунан или подобными заболеваниями. Несмотря на широкий диапазон экспрессии гена как в эмбриональных тканях, так и в течение постнатального онтогенеза, его биологическая роль остается неясной. Мутации этого гена приводят к патологически пролонгированной активации сигналлинга по Ras/MAPK-пути. Прослеживается некоторая корреляция между гено- и фенотипом: клиническая картина напоминает синдром Нунан, но с более высокой частотой встречаемости гипертрофической кардиомиопатии (до 71%). Это делает клинические проявления при мутации RIT1 схожими с таковыми при мутации гена RAF1.

NF1

Ген NF1 кодирует белок нейрофибромин, который активирует ГТФазы (GTPasa-activating protein, RasGAP) и функционирует в качестве отрицательного регулятора Ras/MAPK-пути. Нейрофибромин катализует гидролиз активных Ras-белков (связанных с ГТФ), тем самым ингибируя их активность. Мутация в гене приводит к потери нейрофибромином его функции, неконтролируемой активации ГТФ-связанных Ras-белков, пролонгированной активации всего пути и усиленной экспрессии целевых генов. Мутация данного гена выявлена при НФ1 и ЮММЛ.

RASA1

Ген RASA1, также как NF1, кодирует белок, выполняющий функцию активатора ГТФазы. Как и нейрофибромин, белок RASA1 переводит активные ГТФ-связанные белки в их неактивную ГДФ-связанную форму и, таким образом, отрицательно регулирует передачу сигнала по Ras/MAPK-пути. Мутации в данном гене снижают интенсивность гидролиза ГТФ-связанных Ras-белков и приводят к продленному сигналлингу по Ras/MAPK-пути [2, 29]. Интересно, что мыши с нокаутированным геном RASA1 имеют множественные нарушения васкулярной сети. Причиной этого, возможно, является потеря клеткой способности к нормальной миграции и, соответственно, к нормальному ремоделированию капиллярной сети [29]. Мутации данного гена ассоциируются с проявлениями СМ-АВМ.

SPRED1

Ген SPRED1 (Sprouty-related, EVH1 domain containing 1) кодирует одноименный белок, который выполняет функцию активатора ГТФазы (как NF1 и RASA1) - еще один отрицательный регулятор Ras/MAPK-пути. Его мутации наиболее часто находят при синдроме Легиуса. Экспрессия гена наиболее интенсивна в легочной ткани, тканях головного и спинного мозга и ткани селезенки [36]. Белок SPRED1 ограничивает активацию белков Raf активными Ras-белками. Кроме того, недавние исследования показали, что SPRED1 связывается с нейрофибромином (продукт экспрессии гена NF1) и переносит его к мембране клетки для осуществления его ингибирующего влияния на ГТФ-связанные Ras-белки [48], что частично объясняет схожесть фенотипов между синдромами Легиуса и нейрофиброматоза 1-го типа.

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail



Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.