Оригинальный отечественный препарат мексидол (2-этил-6-метил-3-гидроксипиридина сукцинат) является наиболее эффективным и широко применяемым препаратом мультимодальной нейропротекции, что подтверждено целым рядом клинических исследований и успешным использованием в течение 20 лет в реальной клинической практике [1, 2].
Препарат нормализует клеточный энергосинтез, нарушенный при ишемии, нейтрализует свободные радикалы, стабилизирует мембраны клеток, подавляя перекисное окисление липидов (ПОЛ). Таким образом, противоишемическое действие мексидола реализуется за счет его антиоксидантного, антигипоксантного и мембраностабилизирующего эффектов. Препарат оказывает дополнительное ноотропное, противосудорожное и анксиолитическое действие, повышает устойчивость организма к стрессу, оказывает антиатерогенное и сахароснижающее действие, нормализует метаболические процессы в ишемизированном миокарде, способствует сохранению ганглиозных клеток сетчатки и волокон зрительного нерва при прогрессирующей оптической нейропатии. Данные свойства позволяют применять мексидол у больных с сочетанной патологией без назначения дополнительной терапии, для избегания полипрагмазии и снижения риска развития лекарственных взаимодействий и других нежелательных реакций. Мексидол обладает благоприятным профилем безопасности и хорошей переносимостью, а также низким риском лекарственных взаимодействий [1—3].
В рамках данного обзора будут обобщены современные представления о механизме антиоксидантного и антигипоксического действия мексидола, а также представлены результаты важнейших доклинических и клинических исследований, доказавших эффективность данного препарата.
Механизм антиоксидантного действия мексидола
Антиоксиданты — вещества растительного, животного и синтетического происхождения, которые способны тормозить развитие процессов свободнорадикального окисления [4]. При этом под свободнорадикальным окислением подразумевается окисление с участием свободных радикалов — молекул или структурных фрагментов молекул, имеющих на внешней орбитали неспаренный электрон [5].
Общепринятой классификации антиоксидантов не существует, однако по механизму действия их принципиально можно разделить на препараты прямого и непрямого действия [6].
Антиоксиданты прямого действия обладают непосредственными антирадикальными свойствами, которые можно обнаружить в тестах in vitro. Под антиоксидантами непрямого действия понимают все соединения, уменьшающие развитие окислительного стресса in vivo. При этом приоритетное значение в фармакологии имеют поиск и разработка новых соединений, обладающих прямой антиоксидантной активностью [6].
2-Этил-6-метил-3-гидроксипиридина сукцинат, входящий в состав мексидола, обладает прямой антиоксидантной активностью. Подвижный атом водорода гидроксильной группы может взаимодействовать с образующимися в ходе процессов ПОЛ перокси- (ROO•) и алкокси-радикалами (RO•) и инактивировать их [7]:
AH+X*→A*+XH,
где АН — мексидол с подвижным атомом водорода, X* — радикальный инициатор или промежуточный радикальный продукт свободнорадикального окисления.
Прямая антиоксидантная активность мексидола была подтверждена в ряде исследований in vitro.
На гомогенате коры больших полушарий головного мозга крыс было показано, что мексидол в концентрациях 0,3—12,5 мМ дозозависимо подавлял развитие аскорбатзависимого (неферментативного) и НАДФН2-зависимого (ферментативного) железоиндуцируемого ПОЛ, а в концентрациях 1,25—3,125 мМ обладал способностью связывать супероксидный анион-радикал. При этом стоит особо подчеркнуть, что мексидол не обладал прооксидантной активностью [8].
В другом исследовании в модельной системе аутоокисления люминола и системе с генерацией супероксидного радикала ксантин-ксантиноксидазой в присутствии люцигенина было показано, что мексидол обладал прямой антиоксидантной активностью в диапазоне концентраций 0,05—0,5 мМ [9].
В модельной системе Fe2+-индуцированного ПОЛ с использованием в качестве субстратов свободнорадикального окисления апо-В-содержащих липопротеинов сыворотки крови здоровых доноров выявлено, что мексидол в концентрациях 0,4—3,9 мМ дозозависимо уменьшал интенсивность хемилюминесценции липопротеинов, а также накопление конечного продукта пероксидации липидов — малонового диальдегида (МДА) [10].
В модельной системе многослойных липосом из липопротеинов желтка куриных яиц мексидол тормозил ПОЛ на всех стадиях Fe2+-индуцированной хемилюминесценции: уменьшал интенсивность быстрой вспышки и скорость медленной вспышки, увеличивал латентный период [11].
Стоит отметить, что по антиоксидантной активности in vitro мексидол превосходил другие нейропротекторы. В модельной системе, генерирующей активные формы кислорода, мексидол вызывал снижение светосуммы хемилюминесценции в 4,9 раза, кавинтон — в 3,2 раза. Наименьший эффект наблюдался при применении актовегина и кортексина. В модельной системе липосом угнетение процессов ПОЛ вызвали: мексидол — в 10,8 раза, кавинтон — в 9,2 раза, кортексин — в 4,5 раза по сравнению с контролем. При добавлении актовегина кривая хемилюминесценции практически не отличалась от контрольной. В модельной системе гомогената головного мозга крыс наиболее сильное понижение интенсивности светосуммы хемилюминесценции также вызывал мексидол — в 18,5 раза, кавинтон уменьшал исследуемые параметры в 6,4 раза, кортексин — в 5,8 раза. Актовегин оказал незначительное влияние [12].
Наряду со способностью инактивировать свободные радикалы в опытах in vitro было показано, что мексидол влиял на активность антиоксидантных ферментов: повышал активность Se-зависимой глутатионпероксидазы (концентрации 0,1—1 мМ), снижал активность индуцибельной NO-синтазы (концентрации 0,05—0,5 мМ) и не влиял на активность глутатион-S-трансферазы, каталазы и нейрональной NO-синтазы (концентрации 0,005—1 мМ) [8].
Механизм антигипоксического действия мексидола
Гипоксия (кислородное голодание) — типовой патологический процесс, возникающий в результате снижения содержания или использования кислорода в тканях, а также чрезмерной нагрузки (когда возросшего количества кислорода не хватает для обеспечения еще более возросших потребностей тканей организма) [13].
Антигипоксанты — вещества, которые способны уменьшить или ликвидировать последствия кислородного голодания [14].
Сукцинат (остаток янтарной кислоты), второй компонент молекулы мексидола, обладает выраженным антигипоксическим действием за счет поддержания работы сукцинатоксидазного звена цикла Кребса в условиях недостатка кислорода [15].
В нормоксических условиях работа дыхательной цепи, как правило, зависит от окисления НАД-зависимых субстратов — основного поставщика восстановительных эквивалентов для дыхательной цепи через I митохондриальный ферментный комплекс. Вклад этого пути в интактных клетках, оцениваемый по потреблению кислорода, может составлять до 55—65%. Тем не менее 25—30% митохондриального дыхания в этих условиях связано со II митохондриальным ферментным комплексом и окислением сукцината.
В условиях гипоксии происходят обратимое подавление электронно-транспортной функции митохондриального ферментного комплекса I и компенсаторная активация митохондриального ферментного комплекса II. При этом резко возрастают содержание сукцината в крови и тканях и вклад сукцинатоксидазного окисления в общее дыхание (до 70—80%) [15].
В головном мозге активизируется аминобутиратный шунт (цикл Робертса), в ходе которого из глутамата образуется янтарная кислота [16].
Описана возможность образования сукцината из фумарата в результате обратимой реакции цикла Кребса [17], однако, учитывая, что в ходе данной реакции расходуется молекула ФАДН2, видимо, значение данной реакции как источника сукцината в условиях гипоксии невелико. Предполагается, что для поддержания энергетических процессов в клетках при аноксии и гипоксии целесообразно использовать субстраты, способные участвовать в анаэробном образовании сукцината, тогда как в условиях гипоксии предпочтительнее использовать собственно сукцинат [18].
При развитии тяжелой и длительной гипоксии скорость образования эндогенного сукцината, по-видимому, может быть недостаточной для оптимальной компенсации энергетического дефицита. Поэтому применение мексидола, в состав молекулы которого входит остаток янтарной кислоты, для повышения резистентности клеток к недостатку кислорода является биохимически обоснованным, а связывание янтарной кислоты с 2-этил-6-метил-3-оксипиридином повышает ее проникновение в митохондрии [2].
В последние годы установлено, что янтарная кислота может реализовывать свои эффекты так же, как лиганд орфанного рецептора GPR91 (кодируемого геном SUCNR1), расположенного на цитоплазматической мембране клеток и сопряженного с G-белками. Этот рецептор обнаружен в почках (эпителий проксимальных канальцев, клетки юкстагломерулярного аппарата), а также в печени, селезенке, сосудах [19].
Интересно отметить, что, кроме сукцината, из субстратов цикла Кребса с рецепторами взаимодействуют лишь малеат и метилмалонат, но с активностью в 5—10 раз меньшей по сравнению с сукцинатом [19].
Активация рецептора сукцинатом, присутствующим в сосудистом русле, увеличивает реабсорбцию фосфата и глюкозы, стимулирует глюконеогенез [15, 19].
В условиях гипоксии связывание сукцината со своими специфическими рецепторами (GPR91) может запускать каскад биохимических реакций, повышающих резистентность организма к недостатку кислорода [15].
Изучение антиоксидантного и антигипоксического действия мексидола в экспериментах in vivo
Антиоксидантное и антигипоксическое действие мексидола изучено в многочисленных экспериментальных исследованиях.
В работе на кошках изучалось влияние мексидола на потребление мозгом кислорода и глюкозы и продукцию им лактата и пирувата после острой 15-минутной ишемии головного мозга. Было показано, что у контрольных животных (подвергнутых изолированной ишемии) увеличивалось насыщение кислородом венозной крови, а также повышалось содержание глюкозы, молочной кислоты и пировиноградной кислоты в артериальной и венозной крови. Потребление кислорода и глюкозы мозгом резко падало. Наблюдался рост соотношения лактат/пируват. Мексидол при введении внутривенно в начале реперфузии в дозе 20 мг/кг достоверно увеличивал потребление мозгом глюкозы и кислорода по сравнению с исходным уровнем и контролем. Отношение лактат/пируват существенно не менялось по сравнению с нормой. Данные результаты свидетельствуют об антигипоксической активности препарата [20].
В экспериментах на крысах линии Вистар показано, что введение мексидола в дозе 100 мг/кг внутривенно в момент окклюзии средней мозговой артерии и внутрибрюшинно в последующие два дня приводило к снижению объема поражения мозга с 22,5 до 9,55% и восстанавливало нарушенные при данной патологии способность животных к обучению и память, оцениваемые по условной реакции пассивного избегания. При этом окклюзию средней мозговой артерии моделировали ее экстравазальной перевязкой проксимальнее места бифуркации [21].
В другом исследовании на крысах линии Вистар изучали эффективность мексидола при геморрагическом инсульте. Локальный аутогеморрагический билатеральный инсульт в области внутренней капсулы (диаметр 2 мм, глубина 3 мм) моделировали деструкцией мозговой ткани в области внутренней капсулы с последующим введением в место повреждения крови в объеме 0,02—0,03 мл. Мексидол вводили в дозе 100 мг/кг внутримышечно через 3,5—4 ч после операции, затем ежедневно однократно в течение 7 дней. В группе контрольных животных в течение 1-х суток погибли 22% крыс, к 14-м суткам этот показатель достиг 67%. Введение мексидола полностью предотвращало гибель животных с геморрагическим инсультом. Более того, препарат достоверно снижал частоту неврологических нарушений (парезы, манежные движения), улучшал процессы обучения и памяти в тесте условного рефлекса пассивного избегания, улучшал двигательную активность в тесте открытого поля [22].
Антигипоксическое и антиоксидантное действие мексидола изучали также на модели тотальной ишемии мозга при гравитационных перегрузках в краниокаудальном положении. Было установлено, что внутрибрюшинное введение мексидола в дозах 5 и 20 мг/кг в течение 3 сут до моделирования патологии вызывало увеличение выживаемости животных с 16,3% (контрольные животные) до 50 и 58% соответственно. Эффективность профилактического применения мексидола была обусловлена ограничением гипергликемии и лактат-ацидоза, подавлением процессов ПОЛ в мозге и эритроцитах (уменьшением уровня диеновых конъюгатов, повышением активности супероксиддисмутазы), уменьшением проницаемости мембран эритроцитов для ионов кальция, поддержанием реакции ауторегуляции церебральных сосудов [23].
В исследовании на кроликах изучали влияние мексидола на выраженность окислительного стресса при билатеральной окклюзии общих сонных артерий продолжительностью 3 ч. Мексидол вводили внутримышечно в дозе 5 мг/кг ежедневно. Применение мексидола в раннем постишемическом периоде вызывало снижение первичных и вторичных продуктов ПОЛ с увеличением активности ферментативного звена антиоксидантной системы (глутатионпероксидазы) и улучшение снабжения тканей головного мозга кислородом [24].
Аналогичные результаты были получены на нелинейных белых крысах. Билатеральная окклюзия общих сонных артерий в сочетании с гипотермией приводила к активации свободнорадикального окисления, что проявлялось повышением сывороточного уровня МДА и повышением активности каталазы. Внутрибрюшинное введение мексидола в дозе 50 мг/кг за 3 сут до операции, затем через 20 мин после окклюзии и далее в течение 7 сут 1 раз в день приводило к снижению концентрации МДА и повышению активности каталазы по сравнению с показателями животных, получавших пирацетам по аналогичной схеме в дозе 1600 мг/кг. Стоит отметить, что мексидол превосходил пирацетам и по влиянию на смертность животных: в группе пирацетама — 78%, а в группе мексидола — 50% [25].
На крысах линии Вистар также было изучено влияние мексидола на экспрессию в лобной коре больших полушарий головного мозга транскрипционных факторов Nrf2 (обеспечивает адаптацию клеток к окислительному стрессу) и HIF-1α (обеспечивает адаптацию организма к гипоксии). Было показано, что однократное внутрибрюшинное введение мексидола в дозе 120 мг/кг и его курсовое пероральное введение в дозе 100 мг/кг 3 раза в день в течение 14 дней не влияет на экспрессию данных транскрипционных факторов. В то же время пероральное введение мексидола в дозе 100 мг/кг 3 раза в сутки в течение 14 дней до и после моделирования ишемии головного мозга повышало экспрессию Nrf2 через 4 ч и на 12-е сутки после ишемии и экспрессию HIF-1α на 5-е сутки ишемии по сравнению со значениями контроля [26, 27].
Клинические исследования антиоксидантного и антигипоксического действия мексидола
Изучению антиоксидантного и антигипоксического действия мексидола также посвящено большое количество клинических исследований.
В работе с участием 43 пациентов (19 мужчин и 24 женщины) в возрасте от 42 до 75 лет (средний возраст 61,2±8,8 года) оценивали эффективность мексидола при дисциркуляторной энцефалопатии I—II стадии. Мексидол получали 23 пациента в суточной дозе 300 мг (утром 4 мл 5% раствора на 250 мл физиологического раствора внутривенно капельно и вечером — 2 мл 5% раствора внутримышечно) в течение 10 дней. При необходимости больные получали базисную антигипертензивную, кардиальную и антидиабетическую терапию. Группу сравнения составили 20 пациентов, сопоставимых по полу, возрасту и характеру заболевания, получавших базисную терапию.
После курса лечения у больных, получавших мексидол, было отмечено достоверное повышение резистентности липопротеинов низкой (ЛПНП) и очень низкой плотности, выделенных из сыворотки крови пациентов (до нормальных значений или на 44% от исходного уровня), к окислению, что свидетельствует о восстановлении активности эндогенной антиоксидантной системы. В группе сравнения данный показатель оставался сниженным. Выявлено статистически значимое (на 12,7%) снижение уровня гидроперекисей липидов у пациентов, получавших мексидол, в то время как в группе больных, получавших лишь базисную терапию, каких-либо изменений в параметрах ПОЛ не произошло [28].
В аналогичном исследовании 40 пациентов в возрасте от 55 до 74 лет с хронической ишемией головного мозга (Ι—ΙΙ стадии) были рандомизированы на две группы — основную и контрольную — по 20 человек в каждой. Пациенты основной группы получали мексидол внутримышечно 100 мг в течение первых 10 дней, затем перорально по 125 мг 3 раза в день в течение 20 дней в сочетании с базисной терапией. Пациенты контрольной группы получали в течение 30 дней только базисную терапию. На фоне лечения мексидолом у больных основной группы в отличие от группы контроля уже на 10-й день от начала приема препарата достоверно (р<0,05) уменьшалось содержание в крови МДА, а после окончания курса лечения достоверно повышались активность антиоксидантного фермента супероксиддисмутазы и общая антиоксидантная активность плазмы крови (р<0,05) [29].
В открытом несравнительном исследовании оценивали эффективность мексидола у 30 женщин (средний возраст 66,7 года) с дисциркуляторной энцефалопатией I—II стадии. Мексидол назначали в течение 15 дней 1 раз в сутки внутримышечно в дозе 250 мг (5 мл 5% раствора) с переходом на прием по 1 таблетке (125 мг) 3 раза в день в течение 60 дней.
Курс лечения препаратом обеспечивал снижение астенической и тревожной симптоматики у пожилых пациентов с хронической ишемией мозга и положительную динамику в когнитивной симптоматике нейродинамического типа, а также уменьшал предрасположенность к окислительным процессам ЛПНП in vivo [30].
В другом исследовании оценивали эффективность мексидола при остром нарушении мозгового кровообращения. Был рандомизирован на две группы 51 пациент с ишемическим инсультом в каротидной системе, поступивший в отделение нейрореанимации в первые 24 ч от начала заболевания. Пациентам 1-й группы (24 пациента — 13 мужчин и 11 женщин, возраст 65,8±9,6 года) мексидол вводили первые 3 сут внутривенно капельно в дозе 300 мг/сут в 200 мл физиологического раствора, затем внутримышечно по 100 мг 3 раза в сутки до 14-х суток от начала заболевания. Пациенты 2-й группы (27 пациентов — 8 мужчин и 19 женщин, возраст 73±8,9 года) по такой же схеме принимали плацебо. При анализе динамики значений по шкале NIHSS выявлено опережение восстановления нарушенных неврологических функций у пациентов, получавших мексидол (более выраженное снижение суммарного клинического балла), по сравнению с получавшими плацебо. При этом достоверные различия между группами определены к окончанию курсового введения препарата — к 14-м суткам.
У всех больных в первые дни инсульта выявлено достоверное снижение активности супероксиддисмутазы по сравнению с показателями здоровых добровольцев (контроль). Оценка прироста активности супероксиддисмутазы показала ее значительное повышение при назначении мексидола, наиболее выраженное к 14-м суткам заболевания. Активность глутатионпероксидазы снижалась в обеих исследуемых группах на 1, 3, 7 и 14-е сутки. При этом активность фермента значительно повышалась при назначении мексидола, тогда как на фоне применения плацебо оставалась сниженной к 14-м суткам заболевания.
У пациентов обеих групп наблюдали тенденцию к снижению активности сукцинатдегидрогеназы в клетках крови с течением инсульта. У пациентов, получавших плацебо, имело место достоверное снижение активности фермента в клетках крови на 7-е и 14-е сутки развития инсульта по сравнению с показателями контроля, тогда как у пациентов, получавших мексидол, достоверных отличий выявлено не было. К 14-м суткам активность этого фермента была достоверно более высокой на фоне назначения мексидола, чем в группе плацебо [31].
В аналогичном исследовании с участием 80 пациентов изучали эффективность мексидола при ишемическом инсульте. В основной группе 50 пациентов получали тестируемый препарат в 1—5-е сутки 300 мг внутривенно капельно 2 раза в день, в 6—8-е сутки 100 мг внутривенно капельно 2 раза в день, в 9—10-е сутки внутримышечно в дозе 100 мг 1 раз в день. В качестве контрольной группы были обследованы 30 больных с ишемическим инсультом, в комплексном лечении которых антиоксиданты не использовали.
В группе пациентов, получавших мексидол, в сравнении с контрольной группой пациентов выявлена четкая закономерность снижения параметров первичных и вторичных продуктов свободнорадикального окисления липидов и белков: диеновых конъюгатов, МДА и битирозина, отмечен значительный рост активности неферментативного звена эндогенной антиоксидантной системы (витамина Е, восстановленного глутатиона, небелковых тиолов), а также активности антиоксидантного фермента — глутатионпероксидазы.
Анализ клинических данных показал, что при приблизительно одинаковых в обеих группах исходных баллах по модифицированной шкале Рэнкина в основной группе пациентов, получавших мексидол, к 11-му дню выявлено более выраженное улучшение (с 3,9±0,8 до 2,16±0,4 балла) по сравнению с контрольной группой (с 4,0±0,9 до 2,5±0,6 балла) [32].
В другом исследовании обследованы 72 пациента с впервые развившимся ишемическим инсультом в течение 24 ч от момента появления первых симптомов. Из них 37 пациентов (основная группа) получали дополнительно к базисной терапии мексидол, а 35 — только стандартную терапию. Было показано, что применение мексидола (500 мг внутривенно в течение 14 дней) значительно уменьшало содержание лактата (p=0,002) и инозитола (p=0,005) в клетках по сравнению с контрольной группой, что способствовало восстановлению баланса между аэробным и анаэробным механизмами окисления и благоприятно сказывалось на реабилитационных возможностях пациентов. Выявлена положительная корреляция между содержанием лактата в зоне ишемической полутени и значениями по шкале NIHSS (r=0,5786; р=0,049) и отрицательная корреляция между содержанием лактата в зоне ишемической полутени и степенью функционального восстановления, оцениваемой по индексу Бартел (r= –0,6305; р=0,028), что подтверждает взаимосвязь нарушения метаболизма глюкозы в условиях гипоксии и степени повреждения нервной ткани [33].
Заключение
Таким образом, на основе имеющихся экспериментальных и клинических данных можно сделать следующие выводы:
1. Мексидол обладает как прямой (инактивирует свободные радикалы, повышает активность антиоксидантного фермента глутатионпероксидазы in vitro), так и непрямой (повышает экспрессию в условиях ишемии транскрипционного фактора Nrf2) антиоксидантной активностью. При этом препарат не оказывает прооксидантного действия.
2. Мексидол проявляет выраженное антигипоксическое действие, обусловленное наличием в его молекуле янтарной кислоты, которая, с одной стороны, поддерживает работу сукцинатоксидазного звена цикла Кребса в условиях недостатка кислорода, а с другой — связывается со своими специфическими рецепторами (GPR91) и запускает каскад биохимических реакций, повышающих резистентность организма к недостатку кислорода, а также его способностью повышать экспрессию транскрипционного фактора HIF-1α в лобной коре больших полушарий головного мозга при ишемии.
3. Антиоксидантное и антигипоксическое действие мексидола доказано в многочисленных экспериментальных и клинических исследованиях. С целью максимального раскрытия терапевтического потенциала препарата мексидол предпочтительна длительная непрерывная терапия оптимальными дозировками: в начале лечения инъекции в/в капельно по 250—500 мг в день (5—10 мл) в течение 14 дней с последующим переходом на таблетированную форму 250 мг (мексидол форте 250) 3 раза в день в течение 6—8 недель.
Автор заявляет об отсутствии конфликта интересов.
e-mail: alekseyshulkin@rambler.ru;
https://orcid.org/0000-0003-1688-0017