Возрастные изменения и риск хромосомных аномалий в ооцитах человека (обзор литературы)

Авторы:
  • А. А. Смирнова
    ООО «Центр репродукции и генетики», Москва, Россия; ФГБУ «Национальный медико-хирургический центр им. Н.И. Пирогова» Минздрава России, Москва, Россия
  • Н. А. Зыряева
    ООО «Центр репродукции и генетики», Москва, Россия
  • М. Б. Аншина
    ООО «Центр репродукции и генетики», Москва, Россия
Журнал: Проблемы репродукции. 2019;25(2): 16-26
Просмотрено: 1091 Скачано: 293
В обзоре представлены данные молекулярной биологии об особенностях мейоза у женщин, обусловливающих повышение частоты анеуплоидии в ооцитах с возрастом. Установлено, что анеуплоидными являются около 30% всех зрелых ооцитов и только 1—2% сперматозоидов. Согласно результатам исследований, частота анеуплоидии увеличивается пропорционально возрасту женщины и достигает 82% у женщин старше 42 лет. Основной особенностью оогенеза является длительный период времени между остановкой мейоза во внутриутробном периоде и возобновлением его в каждом цикле, начиная с пубертатного периода и до менопаузы. Рассмотрена ведущая причина возрастной анеуплоидии в ооцитах — ослабление сцепления сестринских хроматид. Показаны независимые от возраста причины анеуплоидии в ооцитах: ошибки контрольных точек формирования веретена в ооцитах, нестабильность веретена деления, сниженная частота и проблемные позиции гомологичной рекомбинации.
Ключевые слова:
  • возраст
  • анеуплоидия
  • ооциты
  • мейоз
  • когезины
  • шугошин
  • сестринские хроматиды

КАК ЦИТИРОВАТЬ:

Смирнова А.А., Зыряева Н.А., Аншина М.Б. Возрастные изменения и риск хромосомных аномалий в ооцитах человека (обзор литературы). Проблемы репродукции. 2019;25(2):16-26. https://doi.org/10.17116/repro20192502116

Список литературы:

  1. Mathews TJ, Hamilton BE. Mean Age of Mothers is on the Rise: United States, 2000—2014. NCHS Data Brief. 2016;(232):1-8.
  2. Martin JA, Hamilton BE, Osterman MJ. Births in the United States, 2013. NCHS Data Brief. 2014;(175):1-8.
  3. Demko ZP, Simon AL, McCoy RC, Petrov DA, Rabinowitz M. Effects of maternal age on euploidy rates in a large cohort of embryos analyzed with 24-chromosome single-nucleotide polymorphism-based preimplantation genetic screening. Fertility and Sterility. 2016;105(5):1307-1313. https://doi.org/10.1016/j.fertnstert.2016.01.025
  4. Chiang T, Schultz RM, Lampson MA. Meiotic origins of maternal age-related aneuploidy. Biology of Reproduction. 2012;10;86(1):1-7. https://doi.org/10.1095/biolreprod.111.094367
  5. Webster A, Schuh M. Mechanisms of Aneuploidy in Human Eggs. Trends in Cell Biology. 2017;27(1):55-68. https://doi.org/10.1016/j.tcb.2016.09.002
  6. May KM, Jacobs PA, Lee M, Ratcliffe S, Robinson A, Nielsen J, Hassold TJ. The arental origin of the extra X chromosome in 47, XXX females. American Journal of Human Genetics. 1990;46(4):754-761.
  7. Hassold T, Jacobs PA, Leppert M., Sheldon M. Cytogenetic and molecular studies of trisomy 13. Journal of Medical Genetics. 1987;24(12):725-732.
  8. Hassold TJ, Pettay D, Freeman SB, Grantham M, Takaesu N. Molecular studies of non-disjunction in trisomy 16. Journal of Medical Genetics. 1991;28(3):159-162.
  9. Takaesu N, Jacobs PA, Cockwell A, Blackston RD, Freeman S, Nuccio J, Kurnit DM, Uchida I, Freeman V, Hassold T. Nondisjunction of chromosome 21. American Journal of Medical Genetics Supplement. 1990;7:175-181.
  10. Martin RH, Rademaker AW. The effect of age on the frequency of sperm chromosomal abnormalities in normal men. American Journal of Human Genetics. 1987;41(3):484-492.
  11. MacLennan M, Crichton JH, Playfoot CJ, Adams IR. Oocyte development, meiosis and aneuploidy. Seminars in Cell and Developmental Biology. 2015;45:68-76. https://doi.org/10.1016/j.semcdb.2015.10.005
  12. Биологический энциклопедический словарь. Гл. ред. Гиляров МС. 2-е изд., испр. М.: Советская энциклопедия; 1989.
  13. Liao GJ, Gronowski AM, Zhao Z. Non-invasive prenatal testing using cell-free fetal DNA in maternal circulation. Clinica Chimica Acta. 2014;428:44-50.
  14. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Reviews Genetics. 2001;2(4):280-291. https://doi.org/10.1038/35066065
  15. Сметник ВП, Тумилович ЛГ. Неоперативная гинекология. Руководство для врачей. СПб.: СОТИС; 1995.
  16. Тейлор Д., Грин Н., Стаут Г., Сопер Р. Биология. Т.3. Пер. с англ. Под ред. Сопера Р. 9-е изд., испр. М.: Лаборатория знаний; 2018.
  17. Hunter N. Meiotic Recombination: The Essence of Heredity. Cold Spring Harbor Perspectives in Biology. 2015;7(12):a016618. https://doi.org/10.1101/cshperspect.a016618
  18. Богданов Ю.Ф. Белковые механизмы мейоза. Природа. 2008;3:3-9.
  19. Michaelis C, Ciosk R., Nasmyth K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell. 1997;91(1):35-45.
  20. Watanabe Y, Nurse P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature. 1999;400(6743):461-464.
  21. Buonomo SB, Clyne RK, Fuchs J, Loidl J, Uhlmann F, Nasmyth K. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell. 2000;103(3):387-398.
  22. Greaney J, Wei Z, Homer H. Regulation of chromosome segregation in oocytes and the cellular basis for female meiotic errors. Human Reproduction Update. 2017;2:135-161. https://doi.org/10.1093/humupd/dmx035
  23. Lee J, Kitajima TS, Tanno Y, Yoshida K, Morita T, Miyano T, Miyake M, Watanabe Y. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nature Cell Biology. 2008;10(1):42-52.
  24. Clift D, Schuh M. Restarting life: fertilization and the transition from meiosis to mitosis. Nature Reviews Molecular Cell Biology. 2013;14(9):549-562. https://doi.org/10.1038/nrm3643
  25. Courtois A, Schuh M, Ellenberg J, Hiiragi T. The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. Journal of Cell Biology. 2012;198(3):357-370. https://doi.org/10.1083/jcb.201202135
  26. Pellestor F, Andréo B, Arnal F, Humeau C, Demaille J. Maternal aging and chromosomal abnormalities: new data drawn from in vitro unfertilized human oocytes. Human Genetics. 2003;112(2):195-203.
  27. Wolstenholme J, Angell RR. Maternal age and trisomy — a unifying mechanism of formation. Chromosoma. 2000;109(7):435-438.
  28. Angell R. First-meiotic-division nondisjunction in human oocytes. American Journal of Human Genetics. 1997;61(1):23-32.
  29. Fragouli E, Wells D, Delhanty JD. Chromosome abnormalities in the human oocyte. Cytogenetic and Genome Research. 2011;133(2-4):107-118. https://doi.org/10.1159/000323801
  30. Mihajlović AI, FitzHarris G. Segregating Chromosomes in the Mammalian Oocyte. Current Biology. 2018;28(16):895-907. https://doi.org/10.1016/j.cub.2018.06.057
  31. Handyside AH, Montag M, Magli MC, Repping S, Harper J, Schmutzler A, Vesela K, Gianaroli L, Geraedts J. Multiple meiotic errors caused by predivision of chromatids in women of advanced maternal age undergoing in vitro fertilisation. European Journal of Human Genetics. 2012;20(7):742-747. https://doi.org/10.1038/ejhg.2011.272
  32. Gabriel AS, Thornhill AR, Ottolini CS, Gordon A, Brown AP, Taylor J, Bennett K, Handyside A, Griffin DK. Array comparative genomic hybridization on first polar bodies suggests that non-disjunction is not the predominant mechanism leading to aneuploidy in humans. Journal of Medical Genetics. 2011;48(7):433-437. https://doi.org/10.1136/jmg.2010.088070
  33. Fragouli E, Alfarawati S, Goodall NN, Sánchez-García JF, Colls P, Wells D. The cytogenetics of polar bodies: insights into female meiosis and the diagnosis of aneuploidy. Molecular Human Reproduction. 2011;17(5):286-295. https://doi.org/10.1093/molehr/gar024
  34. Kuliev A, Zlatopolsky Z, Kirillova I, Spivakova J, Cieslak Janzen J. Meiosis errors in over 20,000 oocytes studied in the practice of preimplantation aneuploidy testing. Reproductive BioMedicine Online. 2011;22(1):2-8. https://doi.org/10.1016/j.rbmo.2010.08.014
  35. Ottolini CS, Newnham L, Capalbo A, Natesan SA, Joshi HA, Cimadomo D, Griffin DK, Sage K, Summers MC, Thornhill AR, Housworth E, Herbert AD, Rienzi L, Ubaldi FM, Handyside AH, Hoffmann ER. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nature Genetics. 2015;47(7):727-735. https://doi.org/10.1038/ng.3306
  36. Hassold T, Merrill M, Adkins K, Freeman S, Sherman S. Recombination and maternal age-dependent nondisjunction: molecular studies of trisomy 16. American Journal of Human Genetics. 1995;57(4):867-874.
  37. Handyside A.H. Molecular origin of female meiotic aneuploidies. Biochimica et Biophysica Acta. 2012;1822(12):1913-1920. https://doi.org/10.1016/j.bbadis.2012.07.007
  38. Gianaroli L, Magli MC, Lappi M, Capoti A, Robles F, Ferraretti AP. Preconception diagnosis. Reproductive BioMedicine Online. 2009;18(3):S-5. https://doi.org/10.1016/S1472-6483(10)61206-0
  39. Garcia-Herrero S, Cervero A, Mateu E, Mir P, Póo ME, Rodrigo L, Vera M, Rubio C. Genetic Analysis of Human Preimplantation Embryos. Current Topics in Developmental Biology. 2016;120:421-447. https://doi.org/10.1016/bs.ctdb.2016.04.009
  40. Rodrigo L, Mateu E, Mercader A, Cobo AC, Peinado V, Milán M, Al-Asmar N, Campos-Galindo I, García-Herrero S, Mir P, Simón C, Rubio C. New tools for embryo selection: comprehensive chromosome screening by array comparative genomic hybridization. BioMed Research International. 2014;2014:517125. https://doi.org/10.1155/2014/517125
  41. Ubaldi FM, Cimadomo D, Capalbo A, Vaiarelli A, Buffo L, Trabucco E, Ferrero S, Albani E, Rienzi L, Levi Setti PE. Preimplantation genetic diagnosis for aneuploidy testing in women older than 44 years: a multicenter experience. Fertility and Sterility. 2017;107(5):1173-1180. https://doi.org/10.1016/j.fertnstert.2017.03.007
  42. Duncan FE, Hornick JE, Lampson MA, Schultz RM, Shea LD, Woodruff TK. Chromosome cohesion decreases in human eggs with advanced maternal age. Aging Cell. 2012;11(6):1121-1124. https://doi.org/10.1111/j.1474-9726.2012.00866.x
  43. Sakakibara Y, Hashimoto S, Nakaoka Y, Kouznetsova A, Höög C, Kitajima TS. Bivalent separation into univalents precedes age-related meiosis I errors in oocytes. Nature Communications. 2015;6:7550. https://doi.org/10.1038/ncomms8550
  44. Chiang T, Duncan FE, Schindler K, Schultz RM, Lampson MA. Evidence that weakened centromere cohesion is a leading cause of age-related aneuploidy in oocytes. Current Biology. 2010;20(17):1522-1528. https://doi.org/10.1016/j.cub.2010.06.069
  45. Kitajima TS. Mechanisms of kinetochore-microtubule attachment errors in mammalian oocytes. Development Growth and Differentiation. 2018;60(1):33-43. https://doi.org/10.1111/dgd.12410
  46. Zielinska AP, Holubcova Z, Blayney M, Elder K, Schuh M. Sister kinetochore splitting and precocious disintegration of bivalents could explain the maternal age effect. Elife. 2015;4:e11389. https://doi.org/10.7554/eLife.11389
  47. Chiang T, Schultz RM, Lampson MA. Age-dependent susceptibility of chromosome cohesion to premature separase activation in mouse oocytes. Biology of Reproduction. 2011;85(6):1279-1283. https://doi.org/10.1095/biolreprod.111.094094
  48. Tsutsumi M, Fujiwara R, Nishizawa H, Ito M, Kogo H, Inagaki H, Ohye T, Kato T, Fujii T, Kurahashi H. Age-related decrease of meiotic cohesins in human oocytes. PLoS One. 2014;7:9(5):e96710. https://doi.org/10.1371/journal.pone.0096710
  49. Obradors A, Rius M, Cuzzi J, Daina G, Gutiérrez-Mateo C, Pujol A, Marina F, Márquez C, Benet J, Navarro J. Errors at mitotic segregation early in oogenesis and at first meiotic division in oocytes from donor females: comparative genomic hybridization analyses in metaphase II oocytes and their first polar body. Fertility and Sterility. 2010;93(2):675-679. https://doi.org/10.1016/j.fertnstert.2009.08.050
  50. Fragouli E, Escalona A, Gutiérrez-Mateo C, Tormasi S, Alfarawati S, Sepulveda S, Noriega L, Garcia J, Wells D, Munné S. Comparative genomic hybridization of oocytes and first polar bodies from young donors. Reproductive BioMedicine Online. 2009;19(2):228-237.
  51. Musacchio A. The molecular biology of spindle assembly checkpoint signaling dynamics. Current Biology. 2015;25(20):1002-1018. https://doi.org/10.1016/j.cub.2015.08.051
  52. Holubcová Z, Blayney M, Elder K, Schuh M. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science. 2015;348(6239):1143-1147. https://doi.org/10.1126/science.aaa9529
  53. Herbert M, Kalleas D, Cooney D, Lamb M, Lister L. Meiosis and maternal aging: insights from aneuploid oocytes and trisomy births. Cold Spring Harbor Perspectives in Biology. 2015;7(4):a017970. https://doi.org/10.1101/cshperspect.a017970
  54. Gruhn JR, Al-Asmar N, Fasnacht R, Maylor-Hagen H, Peinado V, Rubio C, Broman KW, Hunt PA, Hassold T. Correlations between Synaptic Initiation and Meiotic Recombination: A Study of Humans and Mice. American Journal of Human Genetics. 2016;98(1):102-115. https://doi.org/10.1016/j.ajhg.2015.11.019