Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Кильдюшов Е.М.

Кафедра судебной медицины лечебного факультета Российского национального исследовательского медицинского университета им. Н.И. Пирогова

Туманов Э.В.

Институт повышения квалификации и переподготовки кадров Государственной службы медицинских судебных экспертиз, Минск, Республика Беларусь

Соколова З.Ю.

Кафедра судебной медицины лечебного факультета РНИМУ им. Н.И. Пирогова Минздравсоцразвития России, Москва

Теории развития трупного окоченения: история и оригинальная концепция

Авторы:

Кильдюшов Е.М., Туманов Э.В., Соколова З.Ю.

Подробнее об авторах

Просмотров: 20382

Загрузок: 251


Как цитировать:

Кильдюшов Е.М., Туманов Э.В., Соколова З.Ю. Теории развития трупного окоченения: история и оригинальная концепция. Судебно-медицинская экспертиза. 2012;55(3):48‑51.
Kil'diushov EM, Tumanov ÉV, Sokolova ZIu. The theory of postmortem rigidity: the history and an original concept. Forensic Medical Expertise. 2012;55(3):48‑51. (In Russ.)

История вопроса

Существование трупного окоченения (ТО) было известно человечеству с древнейших времен. Началом же судебно-медицинского изучения этого явления можно считать вторую половину XVI века, когда один из родоначальников европейской судебной медицины итальянский врач P. Zacchia предложил использовать выраженность ТО и трупных пятен для установления давности наступления смерти [1, 2].

Несмотря на очевидность существования ТО, механизм его появления, последовательность развития и разрешения оставались неизвестны. Так продолжалось вплоть до начала XIX века, пока в 1811 г. знаменитый французский врач P. Nysten [3] не опубликовал результаты своих исследований, в которых убедительно доказал, что ТО формируется в мышцах, и описал нисходящий порядок его развития, получивший впоследствии название «правило Нистена», которое довольно скоро получило широкую поддержку среди практических экспертов, в том числе и у таких выдающихся судебных медиков того времени, как A. Sommer, M. Larcher, J. Casper [4]. Согласно этому правилу, ТО, начинаясь в мимической мускулатуре лица, далее распространяется на жевательную мускулатуру, мышцы шеи, груди, верхних конечностей, живота и, наконец, на мышцы ног. По времени ТО сохраняется тем дольше, чем позднее после смерти оно наступает, а время его появления, интенсивность и продолжительность находятся в прямой зависимости от степени развития и состояния мускулатуры. В слабых, истощенных мышцах ТО развивается достаточно быстро и бывает кратковременным, а на хорошо развитой, крепкой мускулатуре окоченение появляется позднее и держится дольше.

Как показала дальнейшая судебно-медицинская практика, помимо описанного P. Nysten [5, 6] нисходящего типа развития ТО можно встретить иные варианты, не попадающие под «правило Нистена». Мнения разных исследователей [7—10] по этому поводу значительно различались между собой.

Так, P. Niderkorn (1872) на основании своих личных наблюдений в целом оспаривал порядок ТО, очерченный P. Nysten, а E. von Hofmann (1877), признавая, что «правило Нистена» справедливо для большинства наблюдений, описал восходящий тип трупного окоченения у лиц, умерших в состоянии истощения [7, 8]. А. Lacassagne (1912), выдвигая дегидратационную теорию развития ТО, считал, что последовательность распространения окоченения, зафиксированная P. Nysten, верна лишь для трупов, лежащих на спине, а при изменении положения тела в периоде охлаждения порядок ТО будет иной [9].

Согласно дегидратационной теории, жидкости трупа в силу тяжести стекают сверху вниз, в результате чего вышерасположенные ткани обезвоживаются, что приводит к сворачиванию миозина. В отечных тканях ТО слабое, а в обезвоженных очень сильное (например, при смерти от кровопотери, холеры и пр.). В качестве доказательства предложенного механизма ТО авторы указывали на то, что с помощью бинтования приподнятой конечности человека или животного можно ускорить в ней наступление окоченения, а на трупе с опущенной вниз головой и приподнятыми ногами вначале окоченевают нижние конечности. В экспериментах на животных, делая им инъекции веществ, вызывающих дегидратацию (хлорид кальция, хлороформ, эфир, абсолютный алкоголь), авторы [9, 10] получали немедленное развитие ТО, как они считали, вследствие ускоренного осаждения белковых веществ.

Будучи сторонником достаточно распространенной в то время теории «жизненной силы», P. Nysten [3] предложил свое объяснение механизма развития окоченения, считая, что «с прекращением видимого движения не прекращается еще жизнь мышечных волокон», и рассматривал ТО как «последнее усилие жизни против действия химических сил».

Однако выдвинутая P. Nysten теория механизма развития ТО вскоре обрела оппонентов среди противников теории «жизненной силы». Так, M. Orfila (1821), G. Treviranus (1832), J. Müller (1837), а также ряд видных ученых того времени придерживались так называемой «коагуляционной» теории, согласно которой ТО обусловлено посмертным свертыванием крови и лимфы между мышечными волокнами [11—13].

Однако и коагуляционная теория в свою очередь также подверглась критике. Основанием для нее послужил тот факт, что ТО может развиваться и в трупах обескровленных животных.

Будучи убежденным противником теории «жизненной силы», E. von Brücke в 1842 г. представил коагуляционную теорию в несколько измененном виде, предположив, что ТО происходит вследствие посмертного сворачивания внутрифибриллярного фибрина, который проникает в клетку с током плазмы еще при ее жизни [14]. Против этого возражал R. Virchow [15], обратив внимание на тот факт, что плазма, выделенная из мускула, по своему химическому составу отличается от плазмы, выделенной из крови.

«Второе дыхание» коагуляционная теория ТО получила после выделения W. Kuehne [16] в 1859 г. из мышц лягушки жидкой субстанции, способной при определенных условиях формировать сокращающийся сгусток, названной им миозином.

Теперь у сторонников коагуляционной теории появился неоспоримый аргумент, что в мышцах, как и в крови, есть протеид, способный подвергаться после наступления смерти спонтанной коагуляции. Также было установлено, что в тех случаях, когда миозин в мышцах был разрушен, ТО практически не развивалось, а из мышц, находящихся в состоянии окоченения, миозин выделяли в меньших количествах, чем из мышечной ткани, взятой на исследование прижизненно [17].

В ХХ веке коагуляционная теория ТО получила дальнейшее развитие и была дополнена положением о том, что «свертыванию мышечного фибрина», или, как принято называть сейчас, «полимеризации актин-миозинового комплекса» способствует молочная кислота, уровень которой в миоцитах посмертно нарастает вследствие активации анаэробного гликогенолиза.

Однако коагуляционная теория все же имела и свои слабые стороны, на которые еще в 1858 г. обратил внимание C.-E. Brown-Sequard [18], отметив, что в рамках коагуляционной теории нельзя объяснить имеющуюся последовательность и многочисленные варианты развития ТО, в частности необъяснимым оставался каталептический тип развития ТО.

A.И. Миловзоров [19], проведя гистологическое исследование поперечнополосатых мышц, не обнаружил ни в одном из периодов развития ТО каких-либо морфологических признаков, подтверждающих коагуляционную теорию. В то же время автор обнаружил, что в начале развития ТО можно выявить извитые, «гофреные» волокна с резко сглаженной поперечной исчерченностью (усиление которой происходило по мере нарастания ТО с последующим ее ослаблением в стадии его разрешения) и признаки зернистой и восковидной дегенерации. На основании полученных данных A.И. Миловзоров пришел к выводу, что все существующие теории, раскрывающие причину и механизм ТО, не могут быть признаны подходящими и отвечающими на все неясные вопросы.

По мере развития учения о ТО накапливалось все больше фактов, не укладывающихся в концепцию коагуляционной теории.

Так, в 1908 г. S. Meltzer и J. Auer [17], вводя в кровеносные сосуды экспериментальных животных растворы хлорида кальция и сернокислой магнезии, получили результаты, свидетельствующие о том, что введение незадолго до смерти СаСl2 усиливает развитие ТО, а введение MgSO4 ослабляет выраженность и скорость развития ТО. Аналогичные результаты были получены и в дальнейшем [20].

Позже рядом исследователей [21, 22] было показано влияние нервной системы на развитие ТО. Так, еще в 1910 г. А. Игнатовский [21] отмечал незначительную выраженность ТО при разрушении спинного мозга.

В 1933 г. с критикой коагуляционной теории выступил E. Lundsgaard [23], который в экспериментах ингибировал у лягушек процессы гликолиза. Однако несмотря на то что в мышцах подопытных лягушек в этих случаях происходила щелочная реакция, ТО у всех подопытных животных было выражено достаточно резко.

Все это не только не укладывалось в коагуляционную теорию ТО, но и прямо противоречило ее основным постулатам.

Русским ученым Н.Е. Введенским [24] была предложена парабиотическая теория ТО. Развивая созданное им учение о парабиозе, Н.Е. Введенский считал, что ТО мышц представляет собой пограничное состояние между жизнью и смертью, причем мышца, пребывающая в состоянии парабиоза, может быть возвращена к жизни in vitro при наличии соответствующих условий. Если же такие условия не могут быть созданы, то мышечная ткань умирает. Отмечая значительное физиологическое сходство между мышцей, находящейся в состоянии посмертного окоченения, и парабиозом нерва, называя это сходство «глубоким и основным», Н.Е. Введенский считал, что ТО возникает в результате сильного возбуждения, вызываемого нервом, впадающим в состояние парабиоза.

Парабиотическую теорию ТО поддерживали в более поздних работах многие известные физиологи [25].

Чрезвычайно важным шагом на пути понимания механизма развития ТО стало открытие В.А. Энгельгардтом и М.Н. Любимовой [26] АТФазной активности миозина. Ими было установлено, что гель миозина под влиянием АТФ способен изменять свой объем. На основании полученных результатов было высказано предположение о том, что расщепление АТФ миозином является движущей силой мышечного сокращения [26].

Полученные фундаментальные данные органично дополнили парабиотическую теорию ТО и позволили начать качественно новые исследования физико-химических и биохимических изменений в мышцах, происходящих как во время их прижизненного сокращения, так и в процессе развития ТО.

Т. Erdos (1943), изучая содержание АТФ в мышцах кроликов, степень растворимости актомиозина, динамику ТО, установил, что содержание АТФ и нарастание ТО являются обратно пропорциональными величинами. Поскольку растворимость актомиозина можно снова восстановить добавлением АТФ, Т. Erdos [27] пришел к выводу о том, что ТО и нерастворимость актомиозина являются последствием резкого уменьшения количества АТФ в мышце после смерти.

К аналогичным выводам пришли в своих исследованиях Е. Вate-Smith и J. Bendall [28].

АТФазная теория развития ТО вскоре получила широкое признание и вошла практически во все современные руководства по судебной медицине. Однако сводя суть развития ТО к истощению запасов АТФ изолированно от совокупности всех механизмов мышечного сокращения, авторы, к сожалению, не могут дать адекватную, современную интерпретацию всего многообразия вариантов развития ТО.

Чтобы исправить этот, на наш взгляд, достаточно существенный недостаток в описании и интерпретации механизма развития ТО, рассмотрим последовательность событий, происходящих в миоцитах после наступления биологической смерти организма.

Трупное окоченение как посмертная мышечная контрактура

Прекращение после смерти оксигенизации крови в легких и полная остановка гемодинамики приводят к развитию аноксии всех тканей организма, включая и мышечные.

В условиях аноксии в клетках запускается процесс анаэробного дыхания за счет активации процессов гликолиза. Так как в ходе анаэробного окисления синтезируется значительно меньше молекул АТФ, чем при аэробном окислении метаболических субстратов, то в условиях аноксии гликолиз может лишь частично компенсировать возникший энергетический клеточный дефицит. Образующаяся при этом энергия расходуется миоцитами только на поддержание минимального уровня жизнеобеспечения, который в зависимости от ряда условий может быть различным. Так, скелетная мускулатура в течение 6—9 ч, а сердечная — от 1 до 2 ч могут переживать остановку кровообращения [29].

Следствием дефицита макроэргических фосфатов и нарастающего на фоне гликолиза внутриклеточного ацидоза является блокирование АТФ-зависимых механизмов ионного транспорта, в том числе ответственных за удаление из клеток Са2+ [30].

В условиях ингибирования Са2+-транспортных систем сарколемма мышечных клеток более не может лимитировать поступление Са2+ в саркоплазму. Накапливаясь в околофибриллярном пространстве, Са2+ насыщает регуляторные центры тропонина С, вызывая изменение структуры тропонинового комплекса, приводя к перемещению тропомиозина.

Локальные изменения структуры тропонина и тропомиозина быстро распространяются вдоль всего актинового филамента, генерируя тянущее усилие с формированием прочных актин-миозиновых комплексов [31].

Выраженный дефицит макроэргов и накопление в саркоплазме Са2+ способствуют пролонгированному сохранению актин-миозиновых мостиков в положении генерации силы и формированию аноксической контрактуры — фиксированному сокращению мышечной ткани, возникающему в результате нарушения процесса ее расслабления [32].

Активизация анаэробного гликолиза приводит к внутриклеточному накоплению недоокисленных продуктов липолиза, молочной кислоты и развитию метаболического ацидоза. Существенное снижение внутриклеточного рН, происходящее в ходе ТО, приводит к изменениям химического состава, физико-коллоидной структуры и коагуляции белков миоплазмы. Белки теряют свои коллоидные свойства, становятся неспособными связывать (удерживать) воду и лишаются части своей дисперсной среды, которая представлена внутриклеточной жидкостью. Высвободившаяся гидратносвязанная вода, воздействие протеолитических ферментов и кислая среда создают условия для разрыхления сарколеммы мышечных волокон, разрыхления и набухания коллагена.

Набухание коллагена с последующей частичной отдачей влаги с поверхности трупа в окружающую среду в свою очередь ускоряет процесс трупного высыхания и способствует изменению консистенции мышечной ткани.

Рассмотренная концепция ТО позволяет рассматривать его не как особый феномен, а как посмертную контрактуру мышечной ткани, имеющую определенные физиологические закономерности развития.

Это позволяет объяснить не только суть происходящих внутри миоцитов изменений, но и многочисленные модификации ТО, в том числе и очередность его развития.

ТО как посмертная контрактура развивается изначально в тех мышцах, которые наиболее чувствительны к кислородному голоданию. Так, в первую очередь окоченение развивается в относительно бедной резервами макроэргов сердечной мышце.

В скелетных мышцах, которые при жизни имели более интенсивное кровоснабжение, относительно небольшие анаэробные нагрузки и соответственно содержали меньше запасов энергетических субстратов (например, жевательные мышцы), ТО развивается быстрее. Из скелетной мускулатуры, как правило, наиболее устойчивы к действию гипоксии постоянно подвергающиеся физической нагрузке мышцы ног. Поэтому окоченение в нижних конечностях развивается в последнюю очередь. Совокупность указанных факторов и обусловливает нисходящий тип ТО.

В тех случаях, когда основная физическая нагрузка в течение длительного времени приходилась на мышцы плечевого пояса (при длительном постельном режиме, параличе, парезе нижних конечностей и т.д.), наиболее тренированным к гипоксии становится пояс верхних конечностей, что и обусловливает особое развитие ТО (восходящий тип).

ТО развивается несколько позднее и сильнее выражено у трупов физически развитых лиц, так как в их скелетной мускулатуре более высокая плотность миофибрилл на единицу мышечного объема и относительно высокий запас энергетических субстратов.

У пожилых, истощенных, длительно болевших людей вследствие прижизненного снижения уровня пластического обмена происходит уменьшение общего объема мышечной массы, редукция миофибриллярного аппарата и снижение запасов внутриклеточных макроэргических субстратов. В этих случаях ТО развивается более быстро (может отмечаться уже через 30—40 мин), однако выражено значительно слабее и быстро проходит.

Общими физиологическими и биохимическими изменениями, происходящими в агональный период, обусловлено развитие и каталептического ТО на фоне выраженных предсмертных судорог, когда бóльшая часть мышечных групп в последние минуты жизни попадает в условия резко прогрессирующей гипоксии в сочетании с высокоинтенсивной нейрогуморальной нагрузкой. Совокупное действие этих факторов приводит к резкому повышению скорости перекисного окисления липидов и выраженному внутриклеточному метаболическому ацидозу сократительных клеток. Уже во время агонии во многих миоцитах происходит необратимая альтерация мембранных систем с потерей селективной проницаемости. На смену активному транспорту электролитов приходят процессы диффузии, что приводит к резкому падению градиента концентрации электролитов между миоплазмой сократительных клеток и внеклеточной жидкостью, насыщению тропомиозиновых центров Са2+ и быстрому развитию мышечных контрактур.

Так как ТО тесно связано с явлением парабиоза миоцитов и возможностью различных типов мышечных волокон и групп мышц переживать условия полного прекращения кровообращения, то ряд внешних факторов, а также обстоятельства наступления смерти, влияющие на протекание парабиоза, могут изменять сроки и выраженность протекания ТО.

Низкая температура окружающей среды продлевает сроки парабиоза поперечнополосатой мускулатуры, в результате чего ТО выражено слабее и проявляется в более поздние сроки.

Высокая температура окружающей среды, наоборот, интенсифицирует скорость окислительно-восстановительных процессов, что укорачивает продолжительность парабиоза и способствует более быстрому развитию и выраженности ТО.

Резко выраженное ТО формируется при смерти от действия атмосферного или технического электричества вследствие электрохимической диссоциации и повреждений клеточных мембран, происходящих в миоцитах под действием электрического тока.

Смерть от обильной кровопотери приводит к быстрому развитию аноксии мышечной ткани и соответственно к более выраженному ТО.

Разрешение ТО происходит вследствие разрушения актин-миозиновых комплексов миоцитов лизосомальными ферментами в ходе аутолиза и протекает в том же порядке, как и развивалось: вначале в тех миоцитах, которые раньше погибли на фоне аноксии.

Изложенное выше позволяет сделать вывод о том, что ТО тесно связано с явлением парабиоза миоцитов и возможностью различных типов мышечных волокон и групп мышц переживать аноксию, развивающуюся после наступления биологической смерти. Наиболее быстро ТО начинается в тех мышцах, сократительные клетки которых при жизни содержали наименьшее количество макроэнергетических субстратов.

Развитие ТО обусловлено происходящим в посмертном периоде нелимитируемым ростом концентрации Са2+ в миоплазме сократительных клеток с приведением актин-миозинового комплекса в положение генерации силы без последующего расслабления, что позволяет рассматривать ТО как посмертную мышечную контрактуру.

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.