Транспорт мРНП у эукариот. Транспорт мРНП-частицы в цитоплазме

Авторы:
  • А. А. Глухова
    Институт биологии гена Российской академии наук, Москва, Россия, 119334
  • Е. Н. Набирочкина
    Институт биологии гена Российской академии наук, Москва, Россия, 119334
  • Д. В. Копытова
    Институт биологии гена Российской академии наук, Москва, Россия, 119334
Журнал: Молекулярная генетика, микробиология и вирусология. 2019;37(1): 3-8
Просмотрено: 644 Скачано: 4
После этапов синтеза и процессинга в ядре зрелая мРНК переходит через пору из ядра в цитоплазму. При этом происходит ремоделинг мРНП-частицы, сформированной в ядре, в результате чего с мРНК связываются факторы, необходимые для осуществления ее дальнейших функций в цитоплазме. В данном компартменте в составе мРНП-частицы могут находиться как белки, принимавшие участие в ядерных взаимодействиях, так и наборы новых факторов, свойственные только цитоплазматическим взаимодействиям мРНК и белков. Функции новосинтезированной мРНК, а также места ее локализации в цитоплазме разнообразны. Показано, что в процессе доставки мРНП-частиц к местам их локализации участвуют белки цитоскелета и моторные белки. У эукариот известно несколько семейств моторных белков, и показано, что все они работают координированно и представляют собой целый механизм по доставке «грузов» к местам их локализации в цитоплазме. Также для функционирования данной транспортной системы необходимы белки-адаптеры, служащие посредниками для взаимодействия мРНП-частиц с моторными белками. В отличие от хорошо изученной системы цитоскелета и моторных белков, очень мало известно про то, как именно, через какие адаптерные белки связываются мРНП-частицы с моторными белками.
Ключевые слова:
  • мРНП-частица
  • мРНК
  • локализация мРНК в цитоплазме
  • моторные белки
  • кинезинзависимый транспорт
  • динеинзависимый транспорт
  • миозинзависимый транспорт

КАК ЦИТИРОВАТЬ:

Глухова А.А., Набирочкина Е.Н., Копытова Д.В. Транспорт мРНП у эукариот. Транспорт мРНП-частицы в цитоплазме. Молекулярная генетика, микробиология и вирусология. 2019;37(1):3-8. https://doi.org/10.17116/molgen2019370113

Список литературы:

  1. Dostie J, Dreyfuss G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Current biology : CB. 2002;12(13):1060-1067.
  2. Fundakowski J, Hermesh O, Jansen RP. Localization of a subset of yeast mRNAs depends on inheritance of endoplasmic reticulum. Traffic (Copenhagen, Denmark). 2012;13(12):1642-1652.
  3. Giorgi C, Moore MJ. The nuclear nurture and cytoplasmic nature of localized mRNPs. Seminars in Cell & Developmental Biology. 2007;18(2):186-193.
  4. Nott A, Le Hir H, Moore MJ. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes & development. 2004;18(2):210-222.
  5. Tange TO, Shibuya T, Jurica MS, Moore MJ. Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA (New York, NY). 2005;11(12):1869-1883.
  6. Evans TC, Hunter CP. Translational control of maternal RNAs. WormBook: the online review of C elegans biology. 2005:1-11.
  7. Kloc M, Bilinski S, Chan AP, Allen LH, Zearfoss NR, Etkin LD. RNA localization and germ cell determination in Xenopus. International review of cytology. 2001;203:63-91.
  8. Medioni C, Mowry K, Besse F. Principles and roles of mRNA localization in animal development. Development (Cambridge, England). 2012;139(18):3263-3276.
  9. Singer-Kruger B, Jansen RP. Here, there, everywhere. mRNA localization in budding yeast. RNA biology. 2014;11(8):1031-1039.
  10. Zhou Y, King ML. Sending RNAs into the future: RNA localization and germ cell fate. IUBMB life. 2004;56(1):19-27.
  11. Hirokawa N. mRNA transport in dendrites: RNA granules, motors, and tracks. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2006;26(27):7139-7142.
  12. Kardon JR, Vale RD. Regulators of the cytoplasmic dynein motor. Nature reviews Molecular cell biology. 2009;10(12):854-865.
  13. Schroer TA. Dynactin. Annual review of cell and developmental biology. 2004;20:759-779.
  14. Vale RD, Reese TS, Sheetz MP. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985;42(1):39-50.
  15. Ally S, Larson AG, Barlan K, Rice SE, Gelfand VI. Opposite-polarity motors activate one another to trigger cargo transport in live cells. The Journal of cell biology. 2009;187(7):1071-1082.
  16. Deacon SW, Serpinskaya AS, Vaughan PS, Lopez Fanarraga M, Vernos I, Vaughan KT, et al. Dynactin is required for bidirectional organelle transport. The Journal of cell biology. 2003;160(3):297-301.
  17. Uchida A, Alami NH, Brown A. Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments. Molecular biology of the cell. 2009;20(23):4997-5006.
  18. Mayeda A, Badolato J, Kobayashi R, Zhang MQ, Gardiner EM, Krainer AR. Purification and characterization of human RNPS1: a general activator of pre-mRNA splicing. EMBO J. 1999;18(16):4560-4570.
  19. Lejeune F, Maquat LE. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Current opinion in cell biology. 2005;17(3):309-315.
  20. Golani-Armon A, Arava Y. Localization of Nuclear-Encoded mRNAs to Mitochondria Outer Surface. Biochemistry Biokhimiia. 2016;81(10):1038-1043.
  21. Ephrussi A, Lehmann R. Induction of germ cell formation by oskar. Nature. 1992;358(6385):387-392.
  22. Lehmann R, Nusslein-Volhard C. Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila. Cell. 1986;47(1):141-152.
  23. Anderson P, Kedersha N. RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nature reviews Molecular cell biology. 2009;10(6):430-436.
  24. Decker CJ, Parker R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harbor perspectives in biology. 2012;4(9):a012286.
  25. Gagnon JA, Mowry KL. Molecular motors: directing traffic during RNA localization. Critical reviews in biochemistry and molecular biology. 2011;46(3):229-239.
  26. Cha BJ, Serbus LR, Koppetsch BS, Theurkauf WE. Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. Nature cell biology. 2002;4(8):592-598.
  27. Duncan JE, Warrior R. The cytoplasmic dynein and kinesin motors have interdependent roles in patterning the Drosophila oocyte. Current biology: CB. 2002;12(23):1982-1991.
  28. Januschke J, Gervais L, Dass S, Kaltschmidt JA, Lopez-Schier H, St Johnston D, et al. Polar transport in the Drosophila oocyte requires Dynein and Kinesin I cooperation. Current biology: CB. 2002;12(23):1971-1981.
  29. Schnorrer F, Bohmann K, Nusslein-Volhard C. The molecular motor dynein is involved in targeting swallow and bicoid RNA to the anterior pole of Drosophila oocytes. Nature cell biology. 2000;2(4):185-190.
  30. Aronov S, Aranda G, Behar L, Ginzburg I. Visualization of translated tau protein in the axons of neuronal P19 cells and characterization of tau RNP granules. Journal of cell science. 2002;115(Pt 19):3817-3827.
  31. Carson JH, Worboys K, Ainger K, Barbarese E. Translocation of myelin basic protein mRNA in oligodendrocytes requires microtubules and kinesin. Cell motility and the cytoskeleton. 1997;38(4):318-328.
  32. Kanai Y, Dohmae N, Hirokawa N. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron. 2004;43(4):513-525.
  33. Sossin WS, DesGroseillers L. Intracellular trafficking of RNA in neurons. Traffic (Copenhagen, Denmark). 2006;7(12):1581-1589.
  34. Vuppalanchi D, Willis DE, Twiss JL. Regulation of mRNA transport and translation in axons. Results and problems in cell differentiation. 2009;48:193-224.
  35. Holt CE, Bullock SL. Subcellular mRNA localization in animal cells and why it matters. Science (New York, NY). 2009;326(5957):1212-1216.
  36. Falley K, Schutt J, Iglauer P, Menke K, Maas C, Kneussel M, et al. Shank1 mRNA: dendritic transport by kinesin and translational control by the 5’untranslated region. Traffic (Copenhagen, Denmark). 2009;10(7):844-857.
  37. Ephrussi A, Dickinson LK, Lehmann R. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell. 1991;66(1):37-50.
  38. Palacios IM, St Johnston D. Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte. Development (Cambridge, England). 2002;129(23):5473-5485.
  39. Loiseau P, Davies T, Williams LS, Mishima M, Palacios IM. Drosophila PAT1 is required for Kinesin-1 to transport cargo and to maximize its motility. Development (Cambridge, England). 2010;137(16):2763-2772.
  40. Messitt TJ, Gagnon JA, Kreiling JA, Pratt CA, Yoon YJ, Mowry KL. Multiple kinesin motors coordinate cytoplasmic RNA transport on a subpopulation of microtubules in Xenopus oocytes. Developmental cell. 2008;15(3):426-436.
  41. Bullock SL, Ish-Horowicz D. Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis. Nature. 2001;414(6864):611-616.
  42. Wilkie GS, Davis I. Drosophila wingless and pair-rule transcripts localize apically by dynein-mediated transport of RNA particles. Cell. 2001;105(2):209-219.
  43. Dienstbier M, Boehl F, Li X, Bullock SL. Egalitarian is a selective RNA-binding protein linking mRNA localization signals to the dynein motor. Genes & development. 2009;23(13):1546-1558.
  44. Minakhina S, Steward R. Axes formation and RNA localization. Current opinion in genetics & development. 2005;15(4):416-421.
  45. Krendel M, Mooseker MS. Myosins: tails (and heads) of functional diversity. Physiology (Bethesda, Md). 2005;20:239-251.
  46. Rayment I, Holden HM. The three-dimensional structure of a molecular motor. Trends in biochemical sciences. 1994;19(3):129-134.
  47. Gonsalvez GB, Urbinati CR, Long RM. RNA localization in yeast: moving towards a mechanism. Biology of the cell. 2005;97(1):75-86.
  48. Bohl F, Kruse C, Frank A, Ferring D, Jansen RP. She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J. 2000;19(20):5514-5524.
  49. Jansen RP, Dowzer C, Michaelis C, Galova M, Nasmyth K. Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell. 1996;84(5):687-697.
  50. Long RM, Gu W, Lorimer E, Singer RH, Chartrand P. She2p is a novel RNA-binding protein that recruits the Myo4p-She3p complex to ASH1 mRNA. EMBO J. 2000;19(23):6592-6601.
  51. Long RM, Singer RH, Meng X, Gonzalez I, Nasmyth K, Jansen RP. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science (New York, NY). 1997;277(5324):383-387.
  52. Latham VM, Yu EH, Tullio AN, Adelstein RS, Singer RH. A Rho-dependent signaling pathway operating through myosin localizes beta-actin mRNA in fibroblasts. Current biology: CB. 2001;11(13):1010-1016.
  53. Krauss J, Lopez de Quinto S, Nusslein-Volhard C, Ephrussi A. Myosin-V regulates oskar mRNA localization in the Drosophila oocyte. Current biology: CB. 2009;19(12):1058-1063.
  54. Berezuk MA, Schroer TA. Dynactin enhances the processivity of kinesin-2. Traffic (Copenhagen, Denmark). 2007;8(2):124-129.
  55. Gross SP, Vershinin M, Shubeita GT. Cargo transport: two motors are sometimes better than one. Current biology: CB. 2007;17(12):478-486.
  56. Welte MA, Gross SP. Molecular motors: a traffic cop within? HFSP journal. 2008;2(4):178-182.
  57. St Johnston D. Moving messages: the intracellular localization of mRNAs. Nature reviews Molecular cell biology. 2005;6(5):363-375.
  58. Delanoue R, Davis I. Dynein anchors its mRNA cargo after apical transport in the Drosophila blastoderm embryo. Cell. 2005;122(1):97-106.