Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Талибов О.Б.

Кафедра терапии, клинической фармакологии и скорой медицинской помощи Московского государственного медико-стоматологического университета им. А.И. Евдокимова, Москва, Россия

Диосмин в лечении венозной патологии: основы фармакокинетики и фармакодинамики

Авторы:

Талибов О.Б.

Подробнее об авторах

Просмотров: 11091

Загрузок: 255


Как цитировать:

Талибов О.Б. Диосмин в лечении венозной патологии: основы фармакокинетики и фармакодинамики. Хирургия. Журнал им. Н.И. Пирогова. 2019;(3):135‑140.
Talibov OB. Diosmin in the treatment of venous disease: pharmacokinetics and pharmacodynamics. Pirogov Russian Journal of Surgery. 2019;(3):135‑140. (In Russ.)
https://doi.org/10.17116/hirurgia2019031135

Рекомендуем статьи по данной теме:
Ме­ха­но­хи­ми­чес­кая об­ли­те­ра­ция в ле­че­нии ва­ри­коз­ной бо­лез­ни ниж­них ко­неч­нос­тей. Фле­бо­ло­гия. 2024;(1):72-76
Ве­ноз­ные тром­бо­эм­бо­ли­чес­кие ос­лож­не­ния у жен­щин с хро­ни­чес­ки­ми за­бо­ле­ва­ни­ями вен ниж­них ко­неч­нос­тей, по­лу­ча­ющих пря­мые ораль­ные ан­ти­ко­агу­лян­ты по по­во­ду фиб­рил­ля­ции пред­сер­дий. Фле­бо­ло­гия. 2024;(2):106-114
Вли­яние мик­ро­ни­зи­ро­ван­ной очи­щен­ной фла­во­но­ид­ной фрак­ции на ди­на­ми­ку субъек­тив­ных сим­пто­мов у па­ци­ен­тов с ва­ри­коз­ной бо­лез­нью пос­ле эн­до­ве­ноз­ной ла­зер­ной об­ли­те­ра­ции ма­гис­траль­ных вен и ус­тра­не­ния ва­ри­коз­но из­ме­нен­ных при­то­ков: ран­до­ми­зи­ро­ван­ное кон­тро­ли­ру­емое ис­сле­до­ва­ние ДЕМО. Фле­бо­ло­гия. 2024;(2):122-131
Точ­ность при­ло­же­ния на ос­но­ве ис­кусствен­но­го ин­тел­лек­та при вы­яв­ле­нии хро­ни­чес­ких за­бо­ле­ва­ний вен клас­сов C1 и C2. Фле­бо­ло­гия. 2024;(2):132-138
Вли­яние уни­вер­саль­ных ком­прес­си­он­ных голь­фов с дав­ле­ни­ем 18—21 мм рт.ст. на ди­на­ми­ку сим­пто­мов у па­ци­ен­тов с хро­ни­чес­ки­ми за­бо­ле­ва­ни­ями вен: ран­до­ми­зи­ро­ван­ное кон­тро­ли­ру­емое ис­сле­до­ва­ние ГОЛИАФ. Фле­бо­ло­гия. 2024;(2):139-152
Ве­ноз­ные тром­бо­эм­бо­ли­чес­кие ос­лож­не­ния у жен­щин с хро­ни­чес­ки­ми за­бо­ле­ва­ни­ями вен ниж­них ко­неч­нос­тей, по­лу­ча­ющих пря­мые ораль­ные ан­ти­ко­агу­лян­ты по по­во­ду фиб­рил­ля­ции пред­сер­дий. Фле­бо­ло­гия. 2024;(2):106-114
Вли­яние мик­ро­ни­зи­ро­ван­ной очи­щен­ной фла­во­но­ид­ной фрак­ции на ди­на­ми­ку субъек­тив­ных сим­пто­мов у па­ци­ен­тов с ва­ри­коз­ной бо­лез­нью пос­ле эн­до­ве­ноз­ной ла­зер­ной об­ли­те­ра­ции ма­гис­траль­ных вен и ус­тра­не­ния ва­ри­коз­но из­ме­нен­ных при­то­ков: ран­до­ми­зи­ро­ван­ное кон­тро­ли­ру­емое ис­сле­до­ва­ние ДЕМО. Фле­бо­ло­гия. 2024;(2):122-131
Точ­ность при­ло­же­ния на ос­но­ве ис­кусствен­но­го ин­тел­лек­та при вы­яв­ле­нии хро­ни­чес­ких за­бо­ле­ва­ний вен клас­сов C1 и C2. Фле­бо­ло­гия. 2024;(2):132-138
Вли­яние уни­вер­саль­ных ком­прес­си­он­ных голь­фов с дав­ле­ни­ем 18—21 мм рт.ст. на ди­на­ми­ку сим­пто­мов у па­ци­ен­тов с хро­ни­чес­ки­ми за­бо­ле­ва­ни­ями вен: ран­до­ми­зи­ро­ван­ное кон­тро­ли­ру­емое ис­сле­до­ва­ние ГОЛИАФ. Фле­бо­ло­гия. 2024;(2):139-152

Диосмин относится к химической группе флавоноидов — полифенольных соединений, в основе которых находится флавоновая структура. Впервые описан в 1925 г. [1], а биологическая роль выделенных из красного перца флавоноидных соединений была изучена в 1936 г. Альбертом Сент-Дьерди, американским биохимиком венгерского происхождения, получившим в 1937 г. Нобелевскую премию за исследования биологического окисления и открытие витамина С. Флавоноидные производные в эксперименте уменьшали проницаемость сосудов, поэтому изначально они были названы витамином P (от англ. permeability — проницаемость). Название это закрепилось и просуществовало до начала 50-х годов, когда достаточно подробно были описаны различия в структуре и метаболизме различных соединений этой группы, в частности флавоноидов (диосмина, гесперидина, эриодиктиола, кверцетина и т. д.), а также изначально причисляемых к витамину P антоцианов и L-катехинов [2].

К настоящему моменту выделено и описано более 5000 соединений, относящихся к классу биофлавоноидов. Основными источниками этих веществ являются растения. Особенно богаты ими листья чая, цветы и листья гречихи, софоры японской, плоды цитрусовых, шиповника и черноплодной рябины (эти растения служат сырьем для производства медицинских препаратов).

Физиологическое значение биофлавоноидов в растительном мире по сей день остается не до конца выясненным, возможно, они предохраняют растения от тли и некоторых грибов, а также, поглощая ультрафиолет на длине 330—350 нм, защищают растения от избыточной радиации. Флавоноиды представлены только в растительном мире и не синтезируются в организме животных и человека, поэтому они могут рассматриваться как необходимый компонент пищи.

Отдельные попытки применения флавоноидов в медицине относятся к середине 40-х годов, когда различные препараты этой группы назначались для лечения артериальной гипертензии, стенокардии, а также ревматоидного артрита и других воспалительных заболеваний суставов [3, 4].

Общим недостатком используемых в те годы биофлавоноидных препаратов было отсутствие четкого понимания соотношения входящих в них компонентов — применяемые смеси биофлавоноидов не были стандартизованы по конкретным фракциям входящих в них молекул, что, естественно, не позволяло судить о вкладе того или иного вещества в получаемый эффект.

В дальнейшем флавоноидные препараты начали производиться в виде стандартизованных по содержанию одного или нескольких веществ, при этом другие входящие в состав препарата вещества того же химического класса могли иметь разброс в количественном и качественном составе (нестандартизованные добавки) при условии, что их количество было на 1—2 порядка меньше, чем содержание основных компонентов.

Производство препаратов, содержащих диосмин, в основном представлено двумя технологическими подходами. Первый — использование стандартизованной по содержанию диосмина (90%) и гесперидина (10%) фракции флавоноидов, в которую, помимо этих компонентов, входят количественно не стандартизованные фракции изороифолина и линарина — веществ, предположительно не имеющих собственной активности в связи с их низким содержанием в лекарственной форме.

Вторым подходом является использование диосмина, получаемого путем его выделения и очистки из исходного растительного сырья, содержащего как диосмин, так и гесперидин, из которого получают диосмин, — так называемый метод химического полусинтеза.

Как и в случае с витамином P, первое применение диосмина в клинике было связано с эмпирическими представлениями о механизмах его воздействия (уменьшение проницаемости сосудов). Описание его использования при синдроме «тяжелых ног» у женщин в постменопаузе относится к 1971 г. [5]. В дальнейшем препарат назначался для лечения отеков нижних конечностей у беременных, а потом стал применяться при варикозной болезни вен нижних конечностей [6].

Сходство некоторых звеньев патогенеза варикоза и геморроя позволило начать использование этого вещества при лечении последнего [7].

Несмотря на то что опыт применения диосмина скоро будет насчитывать 50 лет, фармакокинетика и фармакодинамика этого вещества остаются не до конца изученными, по-прежнему по некоторым аспектам фармакологии отсутствует единое и общепринятое представление, поэтому исследования свойств этого лекарства продолжаются.

Фармакокинетика

Абсорбция

По своей химической природе диосмин представляет собой соединение полициклической флавоновой структуры с дисахаридом — 7-О-рамнозил-глюкозид диосметина. Свойства этого соединения таковы, что оно достаточно плохо проникает через фосфолипидный бислой клеточных мембран и его всасывания в кишечнике в неизмененном виде практически не происходит. Однако под влиянием ферментов кишечной микробиоты α-рамнозидаз и β-глюкозидаз от диосметина (так называемого агликонового основания) отщепляются углеводные компоненты, которые в дальнейшем могут служить пищей для обитающих в кишечнике сапрофитных микроорганизмов. Диосметин, являясь молекулой примерно в 2 раза меньшего размера, а также обладая большей липофильностью, легче проходит через клеточные мембраны и попадает в системный кровоток. Всасывание диосметина отсрочено в связи с необходимостью прохождения этапа бактериального метаболизма и начинается примерно через 1—1,5 ч после приема. Время достижения максимальной плазменной концентрации (Cmax) составляет 5 ч [8].

Сходные свойства имеет входящий в состав биофлавоноидной фракции гесперидин, который в виде пролекарства представлен 7-О-рутинозидом, также подверженным ферментативному расщеплению с последующим всасыванием агликона гесперитина.

Исследования фармакокинетики препарата, проводимые с помощью использования радиоактивной углеродной метки С14, продемонстрировали биодоступность диосметина в пределах 30—50%, что является удовлетворительным показателем для препаратов, назначаемых перорально [9].

Последние исследования показали, что не всосавшаяся в кишечнике фракция диосметина может быть подвержена дальнейшему бактериальному метаболизму. В частности, при инкубации диосмина in vitro в присутствии бактерий, относящихся к родам Escherichia, Enterococcus и Bacillus, было обнаружено превращение диосметина в лютеолин и акацетин [10].

Кроме того, полученные в ходе фармакокинетического исследования у человека результаты позволяют предположить, что диосметин может превращаться в гесперитин. Об этом говорит нарастающая в плазме с 4-го часа после приема диосмина концентрация гесперитина [11]. Механизм такого превращения, кишечный бактериальный метаболизм или метаболизм первой фазы с участием ферментативных систем гепатоцитов и/или энтероцитов, на сегодняшний день остаются неясными.

Достаточно спорными выглядят опубликованные в 2018 г. данные об «особой» форме диосмин-гесперидин содержащей фракции флавоноидов, — так называемом препарате μSMIN. Согласно этим опубликованным данным, используемая технология микронизации позволяет увеличить биодоступность в 3—5 раз, что с учетом как минимум 30% биодоступности диосметина, продемонстрированной в эксперименте с радиоактивной меткой, позволяет подвергнуть утверждения обоснованным сомнениям [12]. В целом процесс микронизации исходной субстанции в случае применения биофлавоноидных препаратов, вероятно, не имеет критического значения, так как всасывание зависит не столько от степени диспергированности вещества, сколько от степени и скорости кишечного бактериального метаболизма. Кроме того, клиническое сопоставление результатов, полученных при применении таблетированной формы диосмина и диосмина в саше, не выявило значимых различий во влиянии на основные клинические точки [13].

Несмотря на то что теоретические преимущества микронизации субстанции сохраняются, что было подтверждено в эксперименте по изучению фармакокинетики метаболитов C14-меченого препарата [9], не удалось найти данных исследований, в которых бы проводилось прямое сравнение биодоступности диосмина, входящего в состав различных лекарственных форм. В целом проведение таких исследований затруднено ввиду особенностей абсорбции препарата и дополнительных факторов, влияющих на его метаболизм, о чем будет сказано ниже.

Метаболизм

Основные превращения диосметина относятся к так называемой второй фазе метаболизма. После всасывания и попадания в системный кровоток диосметин подвергается быстрой конъюгации при первом прохождении через печень. При изучении содержания свободного диосметина в плазме человека это вещество либо не выявляется, либо его детекция крайне затруднена ввиду предельно малых концентраций. Основным соединением диосметина, которое может быть подвергнуто количественному определению, является 3-О-глюкуронид, составляющий до 90—95% процентов всех метаболитов. Около 2% приходится на 3,7-О-глюкуронид. Кроме того, в плазме могут быть выявлены диосметина сульфат (не более 5%), а также сульфатированные глюкурониды диосметина (до 10%) [14].

Кроме конъюгатов, в крови обнаруживаются и другие метаболиты диосметина, происхождение которых связывается как с процессами ферментативного превращения в гепатоцитах (метаболизм первой фазы), так и с бактериальным метаболизмом. К таким молекулам относится 3-(3-гидроксифенил)пропионовая кислота (3,3-ГПК), которая определяется в крови в основном в виде ее глюкуроната. Другие метаболиты определяются в основном в моче. Это 3-гидрокси-4-метоксибензойная кислота, 3,4-дигидроксибензойная кислота и 3-метокси-4-гидроксифенолуксусная кислота. Эти метаболиты, вероятно, появляются вследствие расщепления С-кольца флавоновой структуры в результате воздействия на молекулу диоксигеназ и СоА-лигаз [15].

Самостоятельное значение этих метаболитов диосметина в настоящее время только изучается, однако есть данные о том, что они могут обладать фармакодинамической активностью. В частности, 3,3-ГПК в экспериментах приводит к расслаблению препарированной крысиной аорты, снижает артериальное давление, а также подавляет формирование β-амилоидных бляшек. Дегидробензойная кислота обладает антиоксидантным, нейропротективным и противовоспалительным эффектами, а также понижает уровень глюкозы крови [16, 17]. Метаболизм диосмина представлен на рис. 1.

Рис. 1. Метаболизм диосмина.

Выведение

Согласно данным, полученным в эксперименте с участием здоровых добровольцев, выведение диосмина осуществляется в первую очередь в виде глюкуронида с мочой. Кроме того, в моче выявляются другие производные бензойной кислоты, также являющиеся метаболитами этого вещества.

Неабсорбированная из кишечника часть диосмина выводится как с калом в виде непреобразованного вещества, так и в виде диосметина и диосметина глюкуронида. Последний представлен незначительно и является выделенным с желчью метаболитом. В связи с этим любопытным было бы изучение выведения с калом производных бензойной кислоты, что дало бы окончательный ответ на вопрос, являются ли они также продуктами бактериального метаболизма. Однако в настоящее время публикаций, содержащих такие данные, найти не удалось [11, 15].

В связи с различными методиками определения диосметина в плазме данные по периоду полувыведения препарата различаются и составляют от 9—12 до 26—43 ч. Это связано с длительной циркуляцией диосметина-глюкуронида, который используется для количественного определения действующего вещества. В то же время в экспериментальных данных не было выявлено способности препарата кумулировать в организме.

Проникновение через плаценту и в грудное молоко

Несмотря на то что диосметин способен проникать через гематоплацентарный барьер, последний менее проницаем для его конъюгированных форм, что наряду с отсутствием данных о тератогенности препарата позволяет применять диосмин во время беременности. Данные о проникновении других метаболитов диосметина через плаценту, а также данные о попадании препарата и его метаболитов в грудное молоко отсутствуют.

Фармакодинамика

Клинический эффект диосмина складывается из нескольких точек приложения этого препарата.

Регулирование тонуса и проницаемости венозной стенки:

— улучшение лимфатического дренажа;

— уменьшение проницаемости капилляров.

Подавление воспаления:

— уменьшение адгезии лейкоцитов к эндотелию и выброса в кровь сигнальных молекул.

Эндотелийпротективный эффект:

— оксигенация тканей венозной стенки;

— уменьшение свободнорадикального повреждения клеточных структур и активности матриксных металлопротеиназ.

Влияние на процессы свертывания:

— подавление локальной агрегации тромбоцитов;

— активация фибринолиза.

Особенности распределения препарата в организме и его тропность к тканям таковы, что наибольшее количество препарата после введения обнаруживается в препаратах вен. Поэтому повышение тонуса сосудистой стенки реализуется в первую очередь на этом уровне, не приводя к таким системным эффектам, как увеличение общего периферического сопротивления сосудов и повышение артериального давления. Предположительно механизм данного эффекта связан со способностью диосмина ингибировать фермент катехоламин-О-метилтрансферазу, ответственный за превращение норадреналина в норметадреналин (рис. 2).

Рис. 2. Деградация норадреналина: норадреналин (1), норметадреналин (2), норадреналин альдегид (3), норметадреналин альдегид (4).
Избирательное накопление норадреналина не только приводит к увеличению венозного тонуса и улучшению лимфатического оттока, но и уменьшает проницаемость капилляров (исторически первый выявленный эффект биофлавоноидов — витамина P). Клинически эти эффекты препарата могут приводить к уменьшению отеков конечностей [18].

Неясным остается механизм выявленного в эксперименте повышения чувствительности миоцитов к ионам кальция. Действуя как кальциевый синсезист, диосмин при наращивании его концентрации в среде вызывал усиление сокращения под влиянием кальция изолированной бедренной вены крысы [19].

Противовоспалительный эффект диосметина обусловлен его способностью модулировать взаимодействие лейкоцитов и моноцитов с эндотелием. За счет уменьшения способности иммунокомпетентных клеток к адгезии на стенке сосуда тормозятся тромбоцитзависимые и комплементзависимые механизмы поступления в кровоток сигнальных молекул системного воспалительного ответа и гистамина. На мембране лейкоцитов снижается количество экспрессируемых белков — L-селектина и интегрина. В крови уменьшается количество молекул адгезии сосудистой стенки ICAM-1 (inter-cellular adhesion molecule, молекула клеточной адгезии) и VCAM-1 (vascular cell adhesion molecule, сосудистая молекула клеточной адгезии), позволяющих форменным элементам крови фиксироваться на стенках сосудов. Все перечисленные механизмы приводят как к локальному уменьшению проницаемости сосудов, так и прерывают порочный круг запуска системного воспалительного ответа [20].

Фармакодинамическое действие диосмина реализуется не только на уровне сосудистой стенки. Системный ответ на применение диосмина был оценен в эксперименте на мышах, в ходе которого липосахаридами моделировалось системное повреждение легочной ткани. Под влиянием диосмина было зарегистрировано уменьшение выработки системных модуляторов воспалительного процесса интерлейкинов (IL-2, IL-6, IL-17), фактора некроза опухоли (TNF-α), была отмечена супрессия клеточного ответа — уменьшение содержания Т-лимфоцитов CD-4 и CD-8, уменьшалось содержание маркера оксидативного стресса, малонового диальдегида [21].

Выбор оптимального режима дозирования диосмина у человека был осуществлен на основании данных изучения резистентности венозной стенки у здоровых добровольцев после однократного применения препарата. При сопоставлении нарастающих доз от 150 до 900 мг была получена типичная S-образная кривая фармакодинамического ответа (рис. 3).

Рис. 3. Влияние диосмина на прирост венозного сопротивления. Модель доза—ответ построена с помощью пакета GraphPad Prism 8.0.
При использовании препарата в дозировках от 150 до 600 мг отмечалось возрастание сопротивления венозной стенки внешней компрессии, при этом характеристика нарастания зависимости доза—эффект была ближе к линейной. При использовании доз выше 600 мг линейная зависимость исчезала, кривая переходила в асимптотическую фазу, когда дальнейшее наращивание дозы не приводило к адекватному приросту эффекта [22].

Заключение

Диосмин и комбинация диосмина с гесперидином в настоящее время занимают ведущее место среди назначаемых при хронической венозной патологии препаратов. Теоретически подкрепленные фармакодинамические свойства нашли отражение в клинических исследованиях в виде доказанного влияния на симптоматику заболевания, его течение и клинические исходы. Близость патогенетических механизмов обусловила и другое показание к назначению диосмина — острый и хронический геморрой.

Препараты диосмина хорошо переносятся пациентами и, несмотря на теоретическую возможность активации системы цитохромов печени, не имеют клинически выраженных взаимодействий с другими лекарственными препаратами.

Невзирая на широкое применение и достаточно большое количество исследований препаратов, содержащих диосмин, некоторые аспекты их фармакологии остаются по-прежнему недостаточно изученными. Не до конца ясным остается значение метаболитов диосмина, в частности производных бензойной кислоты. Также в связи с особенностями фармакокинетики препарата затруднительным является проведение сравнительных фармакокинетических исследований, что делает сложной интерпретацию доказательной базы, на основании которой на фармацевтическом рынке появляются воспроизведенные препараты, содержащие диосмин.

Автор заявляет об отсутствии конфликта интересов.

The author declare no conflicts of interest.

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail



Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.