Достижения молекулярной биологии и генетики в изучении тонкой структуры генов эукариот, картирование генов на хромосомах млекопитающих, их идентификация и клонирование, обнаружение мутаций в генах, ассоциированных с наследственными и приобретенными заболеваниями, наряду с бурным ростом в области биотехнологий, клеточных технологий и успехами генной инженерии привели к тому, что в конце прошлого века начался бум в исследованиях по анализу молекулярно-биохимических дефектов, ассоциированных с определенной патологией, который привел к пониманию того, что большинство грозных заболеваний человека сопровождается серьезными изменениями в генетическом аппарате клетки. Особенно выражены и наиболее исследованы эти изменения при злокачественных новообразованиях. Из этих данных следует логичный вывод о том, что наиболее радикальным способом борьбы с заболеваниями, вызываемыми изменениями в генетическом аппарате клеток, должны быть мероприятия, направленные непосредственно на причину заболевания, а не ее последствия.
Генная терапия — это лечение наследственных, мультифакториальных и ненаследственных (инфекционных, злокачественных и др.) заболеваний путем введения генов в соматические клетки пациентов с целью направленного изменения генных дефектов или придания клеткам новых свойств.
История развития генной терапии началась в 1972 г., когда в США, в Стэндфордском университете, Стэнли Коэн и Герберт Бойер обнаружили явление прямого переноса фрагментов ДНК от одной бактерии кишечной палочки к другой при непосредственном контакте этих клеток. А уже в 1974 г. в США была учреждена первая в мире биотехнологическая компания «Genetech», где выращивали новые бактериальные культуры с чужими генами.
В 1976 г. в Университете Пенсильвания, США, Уильям Андерсон предложил использование вирусов в качестве носителей ДНК, а в 1990 г. этот исследователь в клинике Университета Пенсильвания ввел больной Ашанти ДеСильва с синдромом комбинированного иммунодефицита (СКИД) генетически модифицированные геном аденозиндезаминазы ее собственные лимфоциты, в последующие 3 года провел 23 внутривенных трансфузии и получил длительную ремиссию, а затем выздоровление.
В 1990—1999 гг. Департамент здравоохранения США за год после выздоровления Ашанти создает свыше сотни лабораторий по генной терапии, проводит более 400 клинических исследований по генной терапии, в которых принимает участие свыше 4 тыс. пациентов. Однако в 1999 г. в госпитале Университета Пенсильвании, США, происходит событие, которое резко затормозило исследования по генной терапии в США. Это — внезапная смерть 17-летнего Джесси Гелзингер в процессе лечения наследственного заболевания печени.
В то же время метод генной терапии все шире распространялся по миру и к настоящему моменту в мире проведено и проводится более 2210 клинических испытаний по генной терапии. География их широка и разнообразна. Это — Америка (63,9%), Европа (24,1%), Азия (6,0%), Австралия (1,5%), международные (4,2%) [1]. По странам имеется распределение, свидетельствующее о том, что эта технология наиболее развита в США и ряде Европейских стран.
Спектр заболеваний, при которых проводятся клинические испытания по генной терапии, также чрезвычайно широк (табл. 1). Независимо от нозологии, в области соматической генной терапии имеются общие задачи. Это:
— выбор наиболее эффективного для лечения гена;
— разработка способов доставки требуемого гена в нужные клетки;
— изучение и обеспечение эффективных подходов и способов нужной регуляции гена;
— вопросы длительности существования и экспрессии введенного гена;
— обеспечение безопасности больного.
Типы генов, используемых при генной терапии, разнообразны, и их выбор определяется патогенетическими механизмами развития заболевания, идентификацией наиболее болезнетворных генов.
Наиболее простая задача в выборе гена стоит при моногенных наследственных заболеваниях, то есть там, где показано, что определенный дефект в данном гене вызывает патологический процесс. Совершенно другая задача по степени сложности в выборе гена для терапии стоит при многофакториальных заболеваниях, таких как злокачественные новообразования, кардиоваскулярные болезни, при которых в патогенезе заболеваний, во-первых, пока много неясного, во-вторых, задействован ряд генов.
Типы генов, описанные для клинических исследований, варьируют очень широко. Среди них 20,2% относятся к генам антигенов, 16,2% — цитокинов, 9,4% — различных рецепторов, 8,6% — факторов иммунодефицита, 7,4% — к «суицидным» генам, 7,4% — к генам факторов роста, 4,2%— ингибиторов репликации, 2,5% — маркеров, 13,2% — к генам других категорий белков, 2,5% — к неизвестным генам [1].
Для эффективной работы выбранный терапевтический ген снабжают сигнальными (регулирующими) элементами, которые необходимы для синтеза полноценной мРНК и целевого белка, а также позволяют управлять специфичностью экспрессии в определенном типе клеток или ткани, длительностью функционирования и нужной регуляцией гена в клетке (рис. 1) [2, 3].
Специфичность экспрессии генов в заданной клетке достигается конструированием векторов, несущих терапевтические гены под контролем промоторов, работающих только в данном типе клеток. К настоящему моменту выявлен ряд тканеспецифичных промоторов, обеспечивающих селективную экспрессию терапевтических трансгенов в клетках определенных органов. В экспериментальной генной терапии сердечно-сосудистых заболеваний в настоящее время используют промоторы, которые обеспечивают преимущественную экспрессию трансгена в миокарде (SM22α-промотор и др.) [4]. Разработан целый ряд тканеспецифичных промоторных систем, в которых использованы гены, высокоэкспрессированные, главным образом, в опухолевых клетках: простатспецифический и простатспецифический мембранный антигены при раке предстательной железы [5], гены, кодирующие сурфактантные белки, А и В, при раке легкого [6, 7], ген мембранно-связанного муцина MUC1/DF3 при раке молочный железы, трахеи, легкого, тонкого или толстого кишечника [8], ген α-фетопротеина — белка, синтезируемого в печени, при раке печени [9], промоторы гена сурвивина человека (hSurv) и гена обратной транскриптазы теломеразы человека (hTERT), обеспечивающих экспрессию трансгена в клетках широкого спектра опухолей [10, 11] (табл. 2).
Поскольку тканеспецифичные промоторы обладают общим недостатком — низким уровнем экспрессии гетерологичных генов, а также ограниченной областью применения, обусловленной их тканеспецифичностью, в настоящее время идет активный поиск промоторов генов человека, не обладающих тканевой специфичностью — универсальных или гибридных промоторов, направленных исключительно на пролиферирующие клетки и не затрагивающих нормальные дифференцированные клетки.
Одной из сложнейших проблем в генной терапии является доставка требуемого гена в нужные ткани при минимизации его контакта с биологическими средами организма до достижения клетки-мишени, а также обеспечение доставки гена в нужную клетку с целью его эффективной и безопасной работы в ней.
В настоящее время генетический материал доставляется в клетку либо в виде «голой» ДНК («naked DNA»)/плазмиды, в том числе в составе наночастиц и липосом, либо с использованием векторов вирусной и невирусной природы, защищающих ДНК от разрушения и имеющих тропность к определенным тканям (рис. 2) [12].
Самым простым способом доставки трансгенов является доставка «голой» ДНК/плазмиды. При этом для целей доставки генетического материала в ядро клетки используется арсенал различных средств. Это может быть физический метод доставки ДНК с применением таких приемов, как прямая инъекция «голой» ДНК, электропорация клеток и доставка ДНК через поры в обработанных мембранах, бомбардировка частицами с ДНК с использованием гидродинамической пушки [13].
На долю «голой» и плазмидной ДНК приходится всего 17,4% протоколов клинических испытаний в области генной терапии, что обусловлено их низкой трансфицирующей способностью. Это обстоятельство является большим ограничением для использования такого генетического материала в разработке метода генной терапии, несмотря на наличие у него ряда неоспоримых преимуществ: отсутствие инфекционности, низкая иммуногенность, высокая технологичность (доступность в получении в высокоочищенном состоянии в больших количествах, стандартность, стабильность при хранении и т. д.).
Альтернативным способом доставки терапевтических генов является использование векторов вирусной, бактериальной и химической природы. Вектор должен эффективно и специфически трансфицировать/трансдуцировать делящиеся и неделящиеся таргетные клетки, экспрессировать трансген в адекватных количествах в течение длительного времени, производиться легко и рентабельно по количеству и качеству, не быть иммуногенным и использоваться для повторного введения гена, являться безопасным при введении и не иметь побочных эффектов.
В качестве векторов для доставки генетического материала в клетку-мишень используют самые разнообразные вирусы, но наиболее распространены векторы на основе аденовируса (ADV), аденоассоциированного вируса, ретро- (RV), лентивируса (LV) и вируса простого герпеса (HSV) (табл. 3). При этом нативные полные вирусные частицы никогда не используются в качестве векторов, так как в этом случае есть опасность встраивания их генетического материала в клетки хозяина с целью приобретения метаболических и биосинтетических продуктов для вирусной транскрипции и репликации. Поэтому вирусы предварительно подвергаются существенной генетической модификации, приводящей к утере их репликационной способности и повышению тропизма к тканям и клеткам.
Вирусные векторы достаточно хорошо изучены, они имеют высокую эффективность трансфекции in vivo, для их наработки существуют коммерческие паковочные клеточные линии. Векторы на основе аденовируса и аденоассоциированных вирусов не встраиваются в геном клетки, а остаются эпихромосомными. Это уменьшает опасность мутагенеза, который может быть индуцирован при внедрении вируса в геном. При конструировании специфически направленных аденовирусных векторов эффективной оказалась замена вирусных промоторов, контролирующих основные транскрипционные области, так называемыми транскрипционными регуляторами, в результате чего экспрессия гена и репликация вируса происходят преимущественно в целевых клетках [14, 15].
Ретровирусные векторы интегрируют в геном хозяина, что при генной терапии обеспечивает стабильность и стойкую экспрессию трансгена в дочерних клетках, однако несет риск инсерционного мутагенеза, который может вызывать инактивацию генов-супрессоров опухолевого роста или активации онкогенов [16].
Необходимо отметить, что вирусные векторы обладают и другими недостатками. Так, они могут нести лишь небольшое количество генетического материала (до 30 кб). Кроме того, аденовирусные векторы 1-го поколения, в которых присутствуют все вирусные гены, обладают выраженной иммуногенностью, которая обусловливает развитие как клеточного, так и гуморального иммунного ответа, что приводит к разрушению не только самого вектора, но и клеток, трансдуцированных ими, и как следствие к ограничению срока экспрессии трансгена в 2—3 нед после трансдукции [17]. В настоящее время проблема иммуногенности таких векторов для генной терапии решается путем разработки конструкций, практически полностью лишенных вирусных генов, так называемых «gutless» вирусов или хелперзависимых (HD)/Ad векторов [18]. Исследования in vivo показали перспективность использования HD/Ad векторов для трансдукции клеток сосудистой системы и миокарда [19].
Несмотря на описанные недостатки, вирусный метод доставки трансгенов в клетки успешно развивается и в настоящее время является доминирующим: около 70% клинических исследований посвящено изучению генетических конструкций, снабженных вирусными векторами.
В то же время в последние годы активно разрабатываются невирусные системы доставки генетического материала с использованием высокомолекулярных химических соединений для конденсации с ДНК: липидсвязанные комплексы — липоплексы либо поликатионные комплексы, имитирующие поверхность вируса — полиплексы (табл. 4). Эти наночастицы защищают плазмидную ДНК в межклеточном пространстве от деградации нуклеазами и облегчают проникновение в клетки-мишени. Положительно заряженные комплексы связываются со специфическими рецепторами (при наличии на их поверхности макромолекул, обладающих свойствами специфического лиганда) или непосредственно с поверхностью клетки. Комплексы проникают в клетку по механизму эндоцитоза. После высвобождения из эндосомы и разборки комплекса нуклеиновая кислота проникает через поры в ядро клетки [20].
Невирусные системы на основе катионных липидов или полимеров имеют ряд преимуществ перед вирусными системами доставки: большой объем несущей ДНК, отсутствие какой-либо вирусной составляющей, а следовательно, низкая иммуногенность, высокая технологичность производства. Однако низкая трансфицирующая способность невирусных векторов и недостаток информации о безопасности у человека тормозят развитие исследований в этом направлении, только 5,2% приходится на клинические испытания, где в качестве системы доставки терапевтических генов используют липоплексы или полиплексы.
К настоящему моменту сформировалось два типа геннотерапевтического воздействия: индивидуализированный подход ex vivo — трансфекция стволовых гемопоэтических клеток, полученных из периферической крови и трансплантированных затем больному, и in vivo — трансфекция клеток внутри организма, куда генетический материал в составе вектора доставляется в результате внутривенной или внутриартериальной (в печеночную артерию) инфузии, внутримышечного, подкожного, интратуморального, интраназального или сублингвального введения. В практике лечения сердечно-сосудистых заболеваний испытываются прямые игольные инъекции конструкций в миокард, введение вирусных векторов при помощи разнообразных катетеров, использование стентов с покрытиями, обеспечивающими дозированный выход лекарственного средства. В онкологии используют, как правило, внутриопухолевое введение целевого гена в составе различных векторов.
На долю заболеваний, для которых разрабатываются методы генной терапии, большая часть приходится на злокачественные новообразования. Злокачественная трансформация клетки происходит в результате накопления генетических дефектов, приводящих к их аномальному росту, непосредственной причиной которых является дисбаланс в пролиферации и гибели клеток. Поэтому разработка способов коррекции этих дефектов является основой генной терапии злокачественных новообразований. Подходы к генной терапии рака включают в себя три основные стратегии: введение нормального гена в опухолевые клетки для замены «мутантного» гена, генетическую модификацию, преследующую цель заглушить «мутантный» ген, и генетические подходы, направленные на запуск гибели опухолевых клеток (табл. 5).
Представления о патогенезе злокачественных новообразований, в основе которого, в том числе, лежат активация онкогенов и инактивация генов-супрессоров опухолевого роста, позволяют искать пути подавления или восстановления функции этих генов.
К настоящему моменту известно более 24 генов-супрессоров, среди них наиболее изученным является ген р53, контролирующий клеточный цикл и поврежденный в ≈50% опухолей человека [21]. Так, коррекционная замена мутантного гена p53 в опухолевых клетках геном дикого типа (не содержащим мутаций) с помощью методов генотерапии приводила к восстановлению функций белка p53 и инициации процессов, запускающих программированную гибель злокачественных клеток. Клинические испытания аденовирусного вектора Ad-p53 показали, что восстановление дикого типа р53 путем доставки гена при помощи дефектного по репликации Ad приводило к значительному противоопухолевому эффекту на фоне низкой общей токсичности [22]. Более того, восстановление р53 сопровождалось увеличением чувствительности опухолевых клеток к химио- и радиотерапии [23].
Технология «молчащих» генов — одна из новейших технологий в генотерапии рака, направлена на сайленсинг (silence — молчание) генов, отвечающих за рост и/или деление раковых клеток, так называемых онкогенов. «Заглушить» гены можно за счет адресной доставки малых интерферирующих двухцепочечных РНК (siRNA), которые блокируют экспрессию гена в результате гомологичной рекомбинации (РНК-интерференция) [24, 25]. Также малые РНК, образующие «шпильки» во вторичной структуре (shRNA), могут быть использованы для подавления экспрессии генов путем РНК-интерференции.
Направленная доставка siRNA была апробирована в клинических испытаниях: CALAA-01 («Calando Pharmaceuticals») для пациентов с меланомой [26] и ALN-VSPOI («Alnylam Pharmaceuticals») для лечения рака печени и других солидных опухолей [27]. Предварительные результаты исследования CALAA-01 и ALN-VSPOI показали безопасность и хорошую переносимость siRNA, что является подтверждением целесообразности продолжения испытаний для продвижения данного подхода к лечению заболеваний онкологического профиля.
Одним из активно развивающихся направлений генной терапии рака является энзиматическая терапия (Gene-Directed Enzyme Prodrug Therapy, GDEPT), основанная на запуске гибели опухолевых клеток за счет придания им способности превращать вводимый в организм препарат-предшественник в токсичный метаболит. Это достигается введением «суицидных» генов, кодирующих фермент вирусного или бактериального происхождения, который в клетках, где он экспрессируется, конвертирует свой субстрат, превращая его из нетоксичного пролекарства в токсичный для клетки метаболит [28]. Наиболее изученными системами «суицидный» ген/пролекарство являются: ген тимидинкиназы вируса простого герпеса (HSVtk)/ганцикловир, ген цитозиндезаминазы (CD)/5-фторцитозин, цитохром P450 (p450)/циклофосфамид и другие [29]. Основная проблема, препятствующая применению этой стратегии в клинической практике, — довольно низкая эффективность доставки терапевтических генов. Несмотря на это, число проведенных клинических испытаний GDEPT растет с каждым годом [1]. Среди препаратов, предназначенных для GDEPT, можно выделить Sitimagene ceradenovec (Cerepro, «Ark Therapeutics Group Plc», Великобритания и Финляндия) на основе аденовирусного вектора со встроенным «суицидным» геном HSVtk. Этот препарат прошел I/II фазы клинических испытаний (глиома), в которых показана безопасность внутриопухолевой доставки вирусной тимидинкиназы в глиальные клетки, при этом отмечена стабилизации процесса у пациентов [30, 31].
Генная терапия рака, направленная на разрушение опухолевых клеток, возможна с использованием вирусов, которые с помощью специальных генетических манипуляций становятся онколитическими, т. е. селективно воздействуют только на опухолевые клетки, вызывают лизис инфицированных клеток и последующую трансдукцию окружающих опухолевых клеток, что в несколько раз увеличивает их терапевтический индекс. Существуют две основные стратегии получения онколитических вирусов: путем делеции (мутации) основных вирусных генов, функции которых могут быть восполнены только в опухолевых, но не в нормальных клетках (делеционные мутанты), и путем регуляции экспрессии основных вирусных генов за счет помещения их под ткане- или опухолеспецифичные транскрипционные регуляторные элементы (транскрипционная регуляция). Препараты на основе онколитических вирусов разрабатывают с использованием РНК- и ДНК-содержащих вирусов, таких как аденовирус, реовирус, вирус простого герпеса, поксвирус. Так, клинические испытания онколитических вирусов ONYX-015 и Н101 на основе мутантных аденовирусов с делецией в гене Е1В и с делецией в генах Е1В и Е3 соответственно, которые селективно реплицируются в опухолевых клетках с дефектным р53, показали безопасность и эффективность при интратуморальном введении в терапии ряда опухолей [32, 33]. В настоящее время проходят клинические испытания препарата REOLYSIN («Oncolitic Biotech. Inc.», Канада), полученного на основе штамма Т3D реовируса человека. В этих исследованиях показана низкая токсичность при внутриопухолевом и внутривенном его введении в режиме монотерапии, а в сочетании с противоопухолевыми препаратами, такими как гемцитабин для рака поджелудочной железы и легкого, доцетаксел для рака мочевого пузыря, предстательной железы и легкого, паклитаксел с карбоплатином для меланомы, рака легкого и яичников, показана высокая противоопухолевая эффективность [34].
Наиболее успешным онколитическим препаратом является OncoVexGMCSF на основе вируса простого герпеса, который проходит II/III фазы клинических испытаний для лечения меланомы, рака молочной железы, опухолей головы и шеи. В геноме этого вируса сохранен ген тимидинкиназы для проведения GDEPT, но удалены обе копии ICP34.5 гена, отвечающего за вирусную репликацию в нормальных клетках, а в область ICP47 встроен ген GM-CSF. Продуцируемый GM-CSF привлекает дендритные клетки (DC) и может стимулировать выброс цитотоксических Т-лимфоцитов [35].
Следует отметить, что современная стратегия развития иммунотерапии рака на фоне расширяющихся знаний о функционировании иммунной системы и формировании иммунного ответа является главной предпосылкой для усовершенствования подходов к лечению с привлечением инновационных лекарственных средств, созданных методами генной инженерии, таких как генные вакцины.
Исследования в этой области ведутся в трех направлениях: модификация опухолевых клеток для придания им большей иммуногенности, введение генов опухолеассоциированных антигенов в дендритные клетки, геномодификация лимфоцитов для повышения цитотоксического ответа.
К настоящему моменту разработана «платформа», представляющая собой два рекомбинантных вектора: на основе поксвирусов коровьей оспы (RV) для первичной вакцинации и птичьей оспы (RF) для ревакцинации с тремя костимуляторными молекулами [В7.1 (CD80), ICAM-1 (CD54) и LFA-3 (CD58), обозначаемыми TRICOM] для повышения иммунного ответа [36—38]. Каждый из этих векторов может содержать трансген для одного или нескольких опухолевых антигенов, например, таких как гены, кодирующие простатспецифический антиген (PSA), раково-эмбриональный антиген (СЕА), мембранно-связанный муцин (MUC-1) и другие. Разработаны вакцины PROSTVAC (RV-, RF-PSA-TRICOM) для иммунотерапии рака предстательной железы [39, 40] и PANVAC (RV-, RF-СЕА-MUC1-TRICOM) для иммунотерапии рака молочной железы, прямой кишки, яичников. Полученные на сегодняшний день результаты применения вакцин выглядят обнадеживающими в плане их переносимости. Однако в плане эффективности наблюдается лишь непродолжительная стабилизация процесса. Несмотря на это, синергизм иммунотерапии и химиотерапии, полученный в ряде клинических испытаний, является подтверждением целесообразности применения вакцин в сочетании с другими методами лечения [41].
Метод, известный как технология химерных антигенных рецепторов, или CAR-технология (от англ. chimeric antigen receptor), в настоящее время является одним из наиболее перспективных и быстро развивающихся направлений в области иммунотерапии злокачественных новообразований [42]. Эта технология заключается в выделении из периферической крови пациента Т-лимфоцитов и их двухкомпонентной модификации в условиях ex vivo: присоединение к их поверхности рецептора, распознающего экспрессируемый большинством лейкемических клеток белок CD19, и введение мощного внутриклеточного механизма, запускающего активный рост и деление клеток в ответ на их взаимодействие с белком-мишенью. Такие генномодифицированные Т-лимфоциты возвращают в кровоток пациента. Предварительные результаты исследований свидетельствуют о том, что этот подход позволяет получить хорошие результаты у 2/3 пациентов, не ответивших на традиционные методы лечения [43—45].
Микроокружение опухоли играет важную роль в прогрессии и метастазировании. Оно включает в себя строму с фибробластами и эндотелиальными клетками сосудов. Вмешательство в эту микросреду также может привести к регрессии опухоли. Наиболее важной «точкой приложения» является ангиогенез. В условиях опухолевого роста активируется выброс проангиогенных цитокинов, таких как сосудистый эндотелиальный фактор роста (VЕGF) и фактор роста фибробластов (FGF). Эти факторы стимулируют рост микрососудов вокруг опухоли с последующей прогрессией и метастазированием. Альтернативой терапии рекомбинантным (гуманизированным) моноклональным антителом бевацизумаб, которое селективно связывает и ингибирует активность VEGF, может стать генная терапия. Предварительные результаты клинических испытаний показали, что доставка антиангиогенных генов, кодирующих белки ангиостатин и эндостатин с помощью аденоассоциированного вектора, вызывает регрессию опухоли с минимальными побочными эффектами [15].
Таким образом, генная терапия достигла определенных успехов: разработаны подходы, сконструировано более 2 тыс. препаратов, прошедших доклинические исследования, проведены клинические испытания в ряде областей медицины. К настоящему моменту в мире уже зарегистрировано четыре препарата для генной терапии (табл. 6). Гендицин (Shenzhen SiBiono GenTech) и Oncorine (H101) (Sunway Biotech Co) — это первые генно-терапевтические препараты, допущенные к клиническому применению в Китае в 2003 и 2005 г. соответственно, для лечения плоскоклеточного рака головы и шеи [46]. Препарат Glybera (uniQurо), созданный на основе аденоассоциированного вектора, в геном которого встроен вариант гена липопротеиназы LPLs447x для лечения моногенного заболевания — дефицита липопротеиназы, вызванного мутацией в гене, кодирующем выработку этого фермента, допущенный к применению в 2012 г. Европейским агентством по оценке лекарственных препаратов (EMA) [47]. Препарат неоваскулген, представляющий собой высокоочищенную сверхскрученную плазмиду с геном VEGF165, кодирующий эндотелиальный фактор роста сосудов под контролем цитомегаловирусного промотора, предназначен для лечения пациентов с ишемией нижних конечностей атеросклеротического генеза и зарегистрирован в России в 2011 г. [48].
В настоящий момент в России, так же как и за рубежом, продолжается развитие этого метода. Так, во II фазе клинических испытаний находятся цельноклеточные генномодифицированные вакцины аллоген (из клеточной линии меланомы человека mel P/tag7) и мелавак (из клеточной линии меланомы mel Ког/GM-CSF), показавшие безопасность и эффективность при лечении меланомы [49]. На стадии клинических испытаний находится препарат канцеролизин, разработанный на основе аденовируса 5-го типа, у которого был полностью делетирован ген белка Е1 В по аналогии с известным штаммом ONYX-015 (ФГУН ГНЦ «Вектор», Россия) [50]. I фазу клинических испытаний проходит препарат АдеЛакт («НТфарма», Россия), представляющий собой рекомбинантные псевдоаденовирусные частицы, несущие ген лактоферрина человека (hLf). Этот препарат, предназначенный для терапии токсикозов различного генеза III и IV степени, проходил доклинические испытания в Московском научно-исследовательском онкологическом институте им. П.А. Герцена — филиале ФГБУ «НМИРЦ» Минздрава России [51]. На этой же базе идут доклинические испытания АнтионкоРАН-М — препарата для противоопухолевой «суицидной» терапии на основе рекомбинантной ДНК, кодирующей гены тимидинкиназы вируса простого герпеса (HSVtk) и колониестимулирующего фактора (GM-CSF) с невирусной системой доставки, разработанного в результате совместных исследований, проведенных в ФГБУН ИМГ РАН, ФГБУН ИБХ им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН и МГУ им. М.В. Ломоносова [52].
Заключение
Таким образом, использование метода генной терапии может быть результатом уже не столь отдаленного будущего, но говорить о реальных перспективах этого направления в медицине, по-видимому, пока преждевременно. Несмотря на то, что большинство клинических испытаний свидетельствует об относительной безопасности геннотерапевтических препаратов, требуется время для окончательного доказательства их эффективности. Возможно, в будущем метод генной терапии станет основным в лечении наследственных заболеваний, а для заболеваний онкологического профиля генная терапия будет рассматриваться как часть комплексного противоопухолевого лечения.
Конфликт интересов отсутствует.