Наиболее распространенным клиническим вариантом диабетической нейропатии является дистальная симметричная сенсомоторная полинейропатия, которая характеризуется сложными патогенетическими механизмами развития, клиническим многообразием и требует комплексного подхода к диагностике и лечению [1—3]. При диабетической полинейропатии (ДПН) изменяется состояние как миелинизированных (Aα, Aβ), так и немиелинизированных (Aδ, C) нервных волокон, однако последовательность повреждений нервов точно не установлена. Данные опроса пациентов свидетельствуют о преобладании в клинической картине нейропатии сенсорных и вегетативных симптомов над мышечной слабостью, что характерно для патологических изменений немиелинизированных нервных волокон [4]. Так, отмечено снижение плотности интраэпидермальных нервов у больных с нарушенной толерантностью к глюкозе при отсутствии изменений в проводимости миелинизированных нервов [5, 6]. На сегодняшний день наиболее распространена концепция о первичном повреждении тонких нервных волокон, что побуждает к активному поиску и совершенствованию методов ранней диагностики ДПН, основанных на оценке функциональных и структурных изменений именно этого типа волокон [7—10].
Современный алгоритм функциональной диагностики ДПН включает:
— оценку клинических (чувствительных, двигательных) и автономных (вегетативных) симптомов;
— электронейромиографическое исследование;
— количественное сенсорное тестирование (оценку изменения порога возбудимости различных модальностей поверхностной и глубокой чувствительности);
— кардиоваскулярные тесты для диагностики кардиальной автономной невропатии.
Другое направление диагностики основано на так называемой панч-биопсии кожи и биопсии нерва с последующим иммуногистохимическим анализом биоптата, которые позволяют оценить структурные изменения тонких немиелинизированных нервных волокон. Однако инвазивность этих методов ограничивает в ряде случаев их применение при сахарном диабете (СД).
Прижизненная неинвазивная оценка потенциальных структурных изменений тонких нервных волокон при ДПН возможна с помощью лазерной конфокальной микроскопии роговицы (КМР), которая на уровне, близком к морфологическому, позволяет визуализировать нервные волокна роговицы (НВР). Так, выявлена корреляция между изменениями длины, плотности НВР и их ветвей по данным лазерной КМР и результатам автономных тестов у пациентов с СД 1-го типа [11]. В другом исследовании отмечены достоверно более низкие значения длины и плотности нервов роговицы у пациентов с СД 2-го типа по сравнению с аналогичными показателями в группе здоровых добровольцев. При этом корреляции между состоянием НВР и интраэпидермальных нервов установлено не было. Исходя их этого, высказано предположение, что изменения тонких нервных волокон в различных анатомических областях развиваются не одновременно, что в свою очередь объясняет актуальность поиска наиболее достоверного метода ранней диагностики ДПН [12].
Внедрение в клиническую практику методов КМР для диагностики системной нейропатии связано в первую очередь с разработкой автоматизированных алгоритмов объективной количественной оценки нервных волокон, которые исключают необходимость «ручного» выделения волокон на конфокальном изображении. Для количественной характеристики НВР возможно использование разных показателей: длины, плотности волокон и их ветвей (CNFL — corneal nerve fiber length, mm/mm2; CNFD, CNF density, per mm2; CNBD — corneal nerve branch density, per mm2 соответственно), коэффициентов анизотропии и симметричности направленности НВР, характеризующих направление хода и особенности структуры нервного волокна [13, 14]. Тем не менее для клинической реализации преимуществ КМР в плане объективной прижизненной оценки НВР и как следствие — ранней диагностики ДПН необходимо проведение сравнительных исследований с уже известными и применяемыми в клинической практике диагностическими подходами.
Цель исследования — сравнительный анализ результатов оценки НВР на основе лазерной КМР и известных неврологических инструментальных методов (электронейромиографии и количественного сенсорного тестирования) в ранней диагностике ДПН.
Материал и методы
В исследование включены 46 пациентов (85 глаз) с СД 1-го типа (1-я группа) и 50 пациентов (87 глаз) с СД 2-го типа (2-я группа). Контрольную группу составили 34 здоровых добровольца (68 глаз), у которых нарушения углеводного обмена отсутствовали. После предварительного анамнестического и клинического отбора всем пациентам было проведено стандартное офтальмологическое обследование, включавшее рефрактометрию, визометрию, пневмотонометрию, периметрию, биомикроскопию структур переднего сегмента глаза и офтальмоскопическое обследование глазного дна. Критериями исключения из исследования были выявленные изменения и/или заболевания роговицы в анамнезе.
Специальный офтальмологический метод исследования НВР был представлен лазерной КМР с использованием аппарата HRT III с роговичной насадкой Rostock Cornea. Конфокальные снимки, полученные с применением этого метода, подвергали обработке с помощью авторского программного обеспечения Liner 1.2 S и автоматизированного вычисления характеристик извитости НВР — коэффициентов анизотропии (KΔL) и симметричности направленности нервов (Ksym) роговицы [14, 15].
Исследования проводили на парных глазах, в том числе для выявления так называемой межокулярной асимметрии, которую, согласно ранее полученным данным, можно расценивать как один из признаков изменений НВР [16, 17]. Показатель межокулярной асимметрии (ПА) рассчитывали по формуле:
где nOD — исследуемые показатели правого глаза; nOS — исследуемые показатели левого глаза.
Лабораторное обследование включало определение уровня гликированного гемоглобина (HbA1с,%), а неврологическое — комплекс специальных методов.
На основании проведенного опроса, количественной оценки жалоб и неврологического дефицита с использованием неврологических шкал TSS (Total Symptom Score, общая оценка симптомов нейропатии), NSS (Neurological Symptoms Score, оценка неврологических симптомов), NDS (Neuropathy Disability Score, шкалы нейропатического дисфункционального счета), а также неврологического обследования определяли стадию ДПН согласно общепринятой классификации (P. Dyck и соавторы, 1999):
N0 — отсутствие признаков нейропатии; N1 — бессимптомная нейропатия; N1a — симптомы отсутствуют, но имеются нарушения по данным количественных чувствительных или автономных тестов, электрофизиологических изменений; N1b — жалобы отсутствуют, но есть нарушения по данным неврологических тестов и изменения, выявляемые в ходе неврологического обследования; N2 — симптомная нейропатия; N2a — + симптомы и положительные неврологические тесты; N2b — + значительное нарушение функции сгибателей голени, + слабость мышц разгибателей стопы (стояние и хождение на пятках); N3 — стадия осложнений полинейропатии (наличие сенситивной атаксии, невропатических болей, кардиальной автономной невропатии и других проявлений, нарушающих трудовую и социальную адаптацию больных).
Кроме этого, выполняли стимуляционную электронейромиографию (ЭНМГ) нижних конечностей с помощью электромиографа фирмы «MBN» (Россия). Регистрацию ЭНМГ-показателей осуществляли при температуре 22º С в состоянии спокойного бодрствования. Функции сенсорных нервов оценивали на основе анализа нейрограммы, моторных нервов — миограммы с соответствующей оценкой скорости распространения возбуждения (СРВ), амплитуды М-ответов моторных нервов, резидуальной латентности (РЛ), амплитуды и скорости распространения возбуждения сенсорных нервов. За нормальные показатели принимали: для скорости распространения возбуждения по моторным волокнам малоберцового (n. peroneus) и большеберцового (n. tibialis) нервов — более 40 м/с, по сенсорным волокнам икроножного нерва (n. suralis) — более 46 м/с; для амплитуды М-ответа малоберцового, большеберцового нервов — более 3,5 мВ и амплитуды S-ответа икроножного нерва — более 5 мкВ. Норма резидуальной латентности (РЛ) для малоберцового и большеберцового нервов находилась в пределах 3 мс.
Для анализа состояния тонких нервных волокон нижних конечностей применяли метод количественного сенсорного тестирования (КСТ) с использованием аппарата TSA II (Termo-Sensory Analyzer), позволяющий оценить функциональное состояние волокон А-дельта и С-волокон, отвечающих за проведение температурной чувствительности. Универсальное программное обеспечение прибора обеспечивает возможность автоматического сравнения полученных результатов с нормативными данными с учетом пола и возраста пациента. Для исследования температурной чувствительности использовали датчик, который прикладывали к коже пациента в исследуемой зоне с последовательным нагреванием или охлаждением этого участка. Устройством автоматически определялась температура адаптации между 30 и 32 °C. Далее для фиксации температурных порогов подавали количественно контролируемый температурный стимул с последующей регистрацией ответа пациента в виде простого нажатия кнопки. Результаты теста фиксировали в форме печатного протокола. Исследование порога восприятия холода позволяло оценить состояние слабомиелинизированных волокон (нормальные средние значения 26,8—32,0 °C), а определение порога восприятия тепла — немиелинизированных С-волокон (нормальные средние значения 32—41,8 °C).
Основу настоящего исследования составил корреляционный анализ данных лазерной КМР и указанных выше показателей ЭНМГ и КСТ. Обработку данных производили с помощью пакета статистического анализа Microsoft Excel 2010. Для оценки уровня корреляции использовали коэффициент Пирсона, коэффициенты анизотропии и асимметрии нервов роговицы сравнивали между исследовательскими группами с помощью t-теста. Различия считали достоверными при t, равном или больше 2, статистически значимыми — при р, равном или меньше 0,05.
Результаты и обсуждение
В соответствии с приведенной выше классификацией ДПН в 1-й группе (СД 1-го типа) у 24 пациентов была выявлена субклиническая (N1a-b), а у 22 — клиническая (N2a-b) стадии ДПН. Во 2-й группе (СД 2-го типа) субклиническая и клиническая стадии ДПН были диагностированы у 27 и 23 пациентов соответственно.
Средние значения показателей, полученные с помощью использованных в данном исследовании тестов в разных группах, представлены в табл. 1.
Таблица 1. Уровень гликированного гемоглобина HbA1c, коэффициенты анизотропии (KΔL) и симметричности направленности НВР (Ksym), пороги тепловой и холодовой чувствительности (WS — warm sensation и CS — cold sensation соответственно), скорость распространения возбуждения по нервному волокну (СРВ) и резидуальная латентность (РЛ) во всех исследуемых группах, M±δ
Показатель | Контрольная группа (n=34) | 1-я группа (СД 1-го типа, n=46) | 2-я группа (СД 2-го типа, n=50) | ||
субклиническая стадия ДПН (n=24) | клиническая стадия ДПН (n=22) | субклиническая стадия ДПН (n=27) | клиническая стадия ДПН (n=23) | ||
HbA1c, % | 5,2±0,2 | 8,2±0,9 | 8,4±0,8 | 6,5±0,4 | 8,6±1,5 |
Данные лазерной конфокальной микроскопии роговицы | |||||
KΔL (правый глаз) | 3,95±1,09 | 2,84±0,43 | 2,4±0,56 | 2,97±0,62 | 2,62±0,62 |
Ksym (правый глаз) | 0,9±0,06 | 0,92±0,04 | 0,92±0,08 | 0,96±0,03 | 0,94±0,04 |
KΔL (левый глаз) | 3,94±0,64 | 2,76±0,56 | 2,37±0,37 | 2,91±0,62 | 2,59±0,63 |
Ksym (левый глаз) | 0,89±0,06 | 0,93±0,05 | 0,88±0,06 | 0,94±0,04 | 0,93±0,04 |
Данные количественного сенсорного тестирования | |||||
WS,◦C | 37,0±1,0 | 37,6±2,8 | 35,6±5,6 | 37,2±2,5 | 38,6±2,9 |
CS,◦C | 30,1±0,9 | 31,9±4,1 | 24,9±4,7 | 29,2±2,7 | 27,7±3,2 |
Данные электронейромиографии | |||||
Амплитуда М-ответа n. Peroneus, мВ | 5,6±0,6 | 4,38±1,9 | 4,2±2,0 | 5,8±1,9 | 4,8±1,8 |
СРВ n. Peroneus, м/с | 50,5±1,6 | 45,2±3,2 | 39,4±3,8 | 45,4±3,6 | 42,7±4,4 |
РЛ n. peroneus, мс | 1,6±0,4 | 2,84±0,2 | 3,06±0,4 | 2,45±0,3 | 2,82±0,7 |
Амплитуда М-ответа n. Tibialis. post мВ | 7,9±0,7 | 6,05±2,7 | 5,7±3,2 | 4,4±1,4 | 3,7±1,3 |
СРВ n. tibialis. Post, м/с | 52,2±2,8 | 41,9±3,5 | 39,1±3,5 | 43,1±2,8 | 41,5±3,9 |
РЛ n. tibialis. Post, мс | 1,2±0,2 | 2,68±0,6 | 3,16±2,7 | 1,74±0,4 | 2,5±1,1 |
Амплитуда S- ответа n. Suralis, мкВ | 24,1±3,5 | 12,9±4,9 | 9,1±4,05 | 12,3±3,0 | 8,0±3,4 |
СРВ n. Suralis, м/с | 52,5±1,6 | 43,05±4,2 | 39,9±9,4 | 49,6±8,8 | 46,2±4,1 |
При анализе результатов КМР следует отметить достоверное уменьшение средних значений коэффициента анизотропии направленности (KΔL) во всех группах пациентов с СД по сравнению с показателями контрольной группы. В то же время тенденция к увеличению коэффициента симметричности направленности (Ksym) была менее выражена. Тем не менее в целом эти результаты свидетельствуют о том, что изменения структуры НВР в виде увеличения извитости происходят уже на ранней (субклинической) стадии ДПН.
Степень снижения коэффициента анизотропии (KΔL) зависела от типа СД и стадии ДПН: при субклинической и клинической полинейропатии и СД 1-го типа средние значения этого коэффициента оказались меньше по сравнению с аналогичными показателями при СД 2-го типа. Так, коэффициент анизотропии KΔL при СД 1-го типа и субклинической ДПН для правого и левого глаза составил 2,84±0,43 и 2,76±0,56, а при клинической стадии — 2,4±0,56 и 2,37±0,37 соответственно. При СД 2-го типа значения аналогичных показателей составили 2,97±0,62; 2,91±0,62 и 2,62±0,62; 2,59±0,63 соответственно. Не исключено, что более низкие показатели коэффициента анизотропии направленности при СД 1-го типа связаны с более выраженной по сравнению с СД 2-го типа потенциальной возможностью декомпенсации заболевания.
Как известно, уровень HbA1c является одним из основных критериев компенсации СД. Выявлено ожидаемое увеличение этого параметра независимо от типа СД по сравнению с аналогичным показателем в контрольной группе с тенденцией к повышению при наличии клинических симптомов ДПН. При этом отмечена достоверная корреляция между показателем HbA1c и значениями коэффициентов направленности НВР — анизотропии (r=0,54, p≤0,008) и симметричности (r= –0,45, p≤0,03) — только при СД 2-го типа и субклинической стадии ДПН, в других подгруппах достоверных корреляций обнаружено не было.
При СД 1-го типа и клинической стадии ДПН на основе ЭНМГ-исследования выявлены ожидаемое снижение средних значений СРВ как по двигательным, так и по чувствительным волокнам, а также увеличение показателя РЛ, который характеризует нервную проводимость в наиболее дистальных отделах нервных волокон. При СД 1-го типа и субклинической стадии ДПН отмечено только увеличение показателя РЛ. Выявленные изменения свидетельствуют о демиелинизирующем характере поражения периферических нервов при СД 1-го типа. Снижение амплитуды М-ответа при стимуляции правого большеберцового нерва при СД 2-го типа и клинической стадии ДПН характерно для аксонального поражения и является неблагоприятным прогностическим признаком течения ДПН.
Поскольку основная задача настоящего исследования была связана с оценкой возможностей ранней диагностики ДПН с помощью различных методов, при проведении корреляционного анализа акцент был сделан на результатах, полученных при отсутствии клинических проявлений, т.е. на субклинической стадии ДПН.
При внутригрупповом анализе полученных результатов в первую очередь обращает на себя внимание более выраженная частота изменений НВР в субклинических стадиях ДПН по сравнению с неврологическими методиками. Так, патологические изменения НВР наблюдали во всех случаях при СД 1-го типа и в 81% — при СД 2-го типа. В то же время при СД 1-го типа снижение показателей СРВ малоберцового и большеберцового нервов имело место в 7 (29%) случаях, изменения РЛ по данным ЭНМГ — в 5 (21%), пограничные значения порогов температурной чувствительности — в 6 (25%). При СД 2-го типа снижение показателей СРВ икроножного нерва отмечено у 5 (18%) пациентов, а значения порогов температурной чувствительности ниже нормы — у 9 (33%).
При СД 1-го типа и субклинической стадии ДПН выявлены достоверные корреляции между коэффициентом анизотропии (KΔL) и электрофизиологическими характеристиками периферических нервов. Отмечены сильная прямая корреляция KΔL с показателями амплитуды М-ответа малоберцового нерва (r=0,73, p≤0,02), М-ответа большеберцового нерва (r=0,58, p≤0,01) и корреляция средней силы с показателями РЛ и скоростью распространения возбуждения малоберцового нерва (r= –0,62, p≤0,05 и r=0,57, p≤0,01 соответственно). В этой же исследовательской подгруппе коэффициент симметричности (Ksym) коррелирует со значениями амплитуды М-ответа (r=0,78, p≤0,01), РЛ (r=0,6, p≤0,07), скорости распространения возбуждения малоберцового нерва (r=0,48, p≤0,04), скорости распространения возбуждения большеберцового нерва (r=0,64, p≤0,003). Выявлена достоверная прямая корреляция средней силы между Ksym и порогом тепловой чувствительности (r=0,6, p≤0,008).
При СД 2-го типа и субклинической ДПН результаты оказались менее однородными. Отмечены достоверные корреляции между коэффициентом анизотропии (KΔL) и ЭНМГ-характеристиками: прямая корреляция средней силы KΔL с показателями скорости распространения возбуждения малоберцового нерва (r=0,46, p≤0,02), М-ответа большеберцового нерва (r=0,6, p≤0,04) и не совсем понятная обратная корреляция с показателем РЛ малоберцового нерва (r= –0,56, p≤0,05). Достоверных корреляционных взаимодействий с результатами КСТ обнаружено не было.
Таким образом, данные корреляционного анализа в целом свидетельствуют об информативности оценки состояния НВР на основе лазерной КМР в плане диагностики первых проявлений ДПН. При этом, помимо тенденции к корреляции, следует отметить более высокий уровень выявляемости именно изменений НВР по сравнению с результатами общепринятых неврологических методов диагностики (ЭНМГ и КСТ).
Еще одно направление анализа полученных результатов было связано с оценкой различий в состоянии НВР парных глаз, т.е. межокулярной асимметрии. Как известно, для парных органов человеческого организма характерна так называемая физиологическая функциональная асимметрия, под которой понимают совокупность признаков неравенства практически идентичных в морфологическом отношении органов [18, 19]. В ранее проведенных исследованиях выявлено, что условно нормальные значения межокулярной асимметрии так называемых глаукомных показателей (морфометрические параметры зрительного нерва, корнеальный гистерезис, внутриглазное давление, толщина склеры и радужки) существенно увеличиваются при глаукоме [16, 17].
Выявленные показатели межокулярной асимметрии (ПА) оказались достаточно вариабельными (табл. 2). Так, ПА для коэффициента анизотропии направленности НВР независимо от типа СД и стадии ДПН имел тенденцию к увеличению по сравнению с аналогичным показателем в контрольной группе в пределах 1,25—2,55%. Изменения же ПА для коэффициента симметричности были менее однородными и оказались особенно выраженными при клинической стадии ДПН на фоне СД 1-го типа (4,4%). На рис. 1 и 2 представлены примеры межокулярной асимметрии структуры НВР при СД 1-го и 2-го типов.
Таблица 2. Средние значения ПА (в%) для коэффициентов анизотропии и симметричности направленности в разных группах
Показатель | 1-я группа (СД 1-го типа) | 2-я группа (СД 2-го типа) | Контрольная группа | ||
субклиническая стадия ДПН | клиническая стадия ДПН | субклиническая стадия ДПН | клиническая стадия ДПН | ||
KΔL | 2,8 | 1,3 | 2,0 | 1,15 | 0,25 |
Ksym | 1,0 | 4,4 | 2,1 | 1,0 | 1,1 |
Рис. 1. Конфокальное изображение НВР при СД 1-го типа и субклинической стадии ДПН.
а — правый глаз (KΔL=2,99; Ksym=0,86); б — левый глаз (KΔL=3,47; Ksym=0,97).
Рис. 2. Конфокальное изображение НВР при СД 2-го типа и субклинической стадии ДПН.
а — правый глаз (KΔL=3,54; Ksym=0,98); б — левый глаз (KΔL=2,62; Ksym=0,98).
Таким образом, в отличие от инвазивных и имеющих определенные противопоказания методов диагностики ДПН (биопсия кожи или нерва) лазерная КМР позволяет неинвазивно визуализировать и на уровне, близком к морфологическому, оценивать состояние нервных волокон. При этом автоматизированный анализ микроструктуры и хода нервов обеспечивает воспроизводимость результатов и объективную оценку патологических изменений НВР. Результаты настоящего исследования демонстрируют связь между состоянием НВР и результатами неврологического тестирования периферических нервов. Наиболее выраженные корреляционные взаимодействия отмечены между значениями коэффициента анизотропии направленности (KΔL) и ЭНМГ-характеристиками. Потеря однонаправленности и увеличение извитости НВР, выраженное в прогрессирующем снижении значения KΔL, совпадают с нарушениями проводящей функции нервов нижних конечностей.
Полученные данные не противоречат результатам ранее проведенных единичных исследований, в которых в качестве параметров, характеризующих изменения НВР, авторы использовали длину и плотность нервных волокон и их ветвей. Описано достоверное уменьшение длины и плотности нервов роговицы и их ветвей, а также снижение амплитуды S-ответа, M-ответа и проводимости икроножного и малоберцовых нервов при СД 1-го типа и наличии ДПН по сравнению с аналогичными показателями, полученными при отсутствии ДПН и у здоровых добровольцев [20]. В других исследованиях выявлены корреляции между изменением длины, плотности НВР и проводимостью периферических нервов, а также данными интраэпидермальной биопсии [21—23]. Еще в одном исследовании уменьшение длины нервов роговицы на фоне ее сохранной чувствительности сопровождалось снижением проводимости по малоберцовому и икроножному нерву, а также изменением порогов тепловой, холодовой и вибрационной чувствительности. Авторы отметили высокую диагностическую значимость лазерной КМР в качестве прогностического метода оценки риска развития ДПН: чувствительность метода составила 63%, специфичность — 74% [24].
Заключение
Полученные в настоящем исследовании результаты свидетельствуют о том, что прижизненная визуализация нервных волокон роговицы на основе лазерной конфокальной микроскопии позволяет неинвазивно выявлять первые признаки структурных изменений нервных волокон. В соответствии с полученными данными в качестве основного критерия оценки изменений структуры нервных волокон роговицы предлагается использовать степень их извитости. В отличие от ранее предложенной и недостаточно информативной характеристики извитости (англ. CNF tortuosity — CNFT), определяемой как общая абсолютная кривизна нервного волокна, использованные в работе количественные характеристики извитости на основе автоматизированного авторского алгоритма анализа НВР оказались информативными в оценке состояния нервных волокон уже на этапе субклинической ДПН, что позволяет рекомендовать данный способ анализа как один из методов диагностики ранних неврологических изменений при СД 1-го и 2-го типов. При условии дальнейшего совершенствования метод лазерной конфокальной микроскопии роговицы может быть включен в алгоритм ранней диагностики диабетической полинейропатии.
Участие авторов:
Концепция и дизайн исследования: С.А., Н.Ч., З. С.
Сбор и обработка материала: Н.Ч., З.С., А.Ф., Л.А.
Статистическая обработка: Н.Ч.
Написание текста: Н.Ч.
Редактирование: С.А., З.С., Л.А., И.С.
Авторы заявляют об отсутствии конфликта интересов.