Список сокращений
2-HG — (D)-2-гидроксиглутарат
2-HG — D-2-гидроксиглутарат
DESI MS — масс-спектрометрия с применением метода десорбционно-электроспрейной ионизации
ESI — электроспрейная ионизация
IDH1 — изоцитратдегидрогеназа 1-го типа
IDH2 — изоцитратдегидрогеназа 2-го типа
IDH3 — изоцитратдегидрогеназа 3-го типа
αКГ — альфа-кетоглутарат
ЖК — жирные кислоты
МРТ — магнитно-резонансная томография
ПКМ — протеинкиназа М
ПКС — протеинкиназа С
ЦНС — центральная нервная система
Проблема диагностики и лечения опухолей головного мозга является одной из самых серьезных в современной онкологии. По данным Центрального регистра опухолей мозга (США), новообразования глиального ряда составляют около 31% от общего числа первичных опухолей ЦНС. При этом более 50% глиом составляют глиобластомы [1]. Показатели заболеваемости для диагностированных глиальных опухолей зависят от гистологического типа опухоли, возраста пациента в момент постановки диагноза, пола, этнической принадлежности и места жительства. По усредненным данным, заболеваемость всеми типами глиальных опухолей составляет 4,67—5,13 случая на 100 000 человек [2]. Усредненные по возрасту показатели заболеваемости для диагноза «глиобластома» составляют 0,89—3,69 случая на 100 000 человек. Показано, что олигодендроглиомы и олигоастроцитомы чаще встречаются у пациентов в возрасте 35—44 лет, в то время как анапластическая астроцитома и глиобластома более часто встречаются в возрастной группе 75—84 лет [1, 2]. В последнем варианте классификации опухолей ЦНС ВОЗ (2016 г.) [3] упор при определении типа опухоли делается на молекулярно-биологические особенности новообразований, так как считается, что именно реализованные клеткой свойства ее генома и эпигенома содержат в себе ключ к новым методам диагностики и терапии новообразований мозга [4—6]. На сегодняшний день стандартом лечения глиальных опухолей головного мозга является комбинированное лечение — радикальное либо сверхрадикальное (иссечение тканей за границей контрастируемой части опухоли) нейрохирургическое вмешательство с использованием современных систем интраоперационной навигации и визуализации в сочетании с последующими химиотерапией и лучевой терапией [1, 7—13]. В ходе операции хирург сталкивается с серьезными вызовами, требующими быстрого ответа на ряд непростых вопросов. Важнейшие из них связаны с определением физической границы «опухоль—интактная мозговая ткань», экспресс-диагностикой гистологического строения опухоли, определением степени ее злокачественности. Сегодня для ответа на эти вопросы используются традиционные «медленные» методы гистологического исследования свежезамороженных образцов тканей, чувствительность и специфичность которых требуют улучшения [14].
Высокая востребованность новых молекулярных подходов к дифференциальной диагностике опухолей мозга диктует необходимость разработки интегральных экспресс-методов, способных обеспечить надежную диагностику особенностей опухоли. Такие методы должны ускорять постановку окончательного гистологического диагноза, а по чувствительности и специфичности не уступать традиционному гистологическому исследованию.
Один из перспективных методов высокоточной экспресс-диагностики опухолей — идентификация ткани при помощи методов масс-спектрометрического профилирования. В настоящее время общепринятым подходом является решение таких задач с использованием методов так называемой прямой масс-спектрометрии, в которых совмещены процессы микроэкстракции исследуемых молекул из биологического образца и их ионизация. Первые работы, в которых описаны исследования тканей методами прямой масс-спектрометрии, были выполнены с использованием метода десорбционно-электроспрейной ионизации (DESI), в котором микроэкстракция исследуемых молекул из образца с их последующей ионизацией осуществляется при взаимодействии заряженных капель водно-метанольной смеси с исследуемым образцом. Это позволяет получить данные о липидном профиле опухолевой ткани, а также распределении в ткани различных характерных водорастворимых онкометаболитов [15—17]. Основными молекулярными маркерами липидной природы, на основе которых проводится идентификация тканей при помощи описанных выше методов, являются насыщенные и ненасыщенные жирные кислоты (ЖК), глицерофосфоинозитолы, глицерофосфосерины, плазминил-глицерофосфоэтаноламины и сульфатиды. Масс-спектрометрический метод исследования позволяет осуществить одновременное профилирование тотальной фракции липидов, включающей как структурные липиды мембран, так и запáсные липиды (триглицериды) и пр. Несмотря на значительный объем работ [18, 19], посвященных исследованию липидных профилей тканей опухолей мозга, существует острая потребность в интеграции методов липидного профилирования с клиническими, молекулярно-генетическими и иммуногистохимическими методами диагностики.
Липидный обмен в глиальных опухолях
Еще в 1949 г. в работе G. Brante [20] были выявлены отличия в липидном составе интракраниальных опухолей в сравнении со здоровой мозговой тканью. Более поздние работы K. Gopal и соавт. [21] показали, что для тканей внутримозговых опухолей характерно повышение концентрации свободных ЖК, вероятно, возникающее в результате дисбаланса синтеза липидов опухолью.
Результаты недавних исследований показали, что предпочтительным энергетическим субстратом для клеток глиомы оказываются высшие ЖК — свободные и в составе липидов [22]. Клетки глиомы человека, первично культивируемые в минеральной среде без сыворотки, способны окислять свободные ЖК, чтобы поддерживать респираторную и пролиферативную активность [23]. Благодаря использованию глюкозы и уксусной кислоты, меченных изотопом углерода 13С, вводимых как в культуру клеток глиобластомы, так и пациентам непосредственно перед операцией, было показано, что в глиомах отмечается выраженный сдвиг предпочтения ацетата глюкозе в качестве окисляемого субстрата, а также значительное снижение интенсивности окисления глюкозы [24, 25].
Несмотря на то что ЖК оказываются предпочитаемым энергетическим субстратом для клеток глиомы, возможно, что они как импортируются из крови, так и предварительно синтезируются самими клетками опухоли. ЖК, связываясь с мембранными белками-транспортерами, способны проходить через плазматическую мембрану, и этот путь действительно может быть источником питательных веществ in vivo. Высокая доступность глюкозы в культивационной среде (при условии активного транспорта глюкозы в клетки) позволяет использовать ее как субстрат гликолиза, приводящий к синтезу пирувата, ацетил-КоА, а затем и Ж.К. Полученные Ж.К. могут быть аэробно окислены митохондриями клеток. Показано, что уровень экспрессии синтазы ЖК в клетках глиомы существенно превышает экспрессию для здоровой мозговой ткани и повышается при увеличении степени злокачественности глиомы [26].
Синтез ЖК идет в клетке постоянно, и субстратом для него служит ацетил-КоА, получаемый из цикла Кребса. Праймером синтеза служит малонил-СоА, получаемый карбоксилированием ацетил-СоА ацил-СоА-карбоксилазой 1, который затем наращивается синтетазой ЖК с получением длинноцепочечных ЖК, таких как пальмитат [27]. Мононенасыщенные и полиненасыщенные ЖК синтезируются в результате активации нескольких ферментов: стеароил-десатуразы и десатуразы ЖК 1 и 2, действующих на насыщенные ЖК.
Особенностью метаболизма опухолевых клеток является то, что практически все ЖК эти клетки синтезируют de novo, и ферменты синтеза оказываются потенциальными мишенями для терапии опухолей [28, 29].
Репертуар синтезируемых ЖК зависит от энергетического статуса клетки и ее текущих метаболических потребностей: так, при активной пролиферации синтезируются ЖК, необходимые для создания мембранных структур, при задержке пролиферации синтезируются ЖК, необходимые для синтеза запасных липидов [30].
Показано, что синтез ЖК продолжается и при низкой концентрации кислорода в ткани опухоли (что объясняется отсутствием необходимости в кислороде для протекания гликолиза), а в условиях низкого содержания питательных веществ процесс синтеза ЖК активируется сигнальным каскадом гипоксия-индуцированного фактора 1-альфа [31]. ЖК при этом конденсируются в липидные капли, находящиеся в цитоплазме, служащие своеобразным депо материала для энергетического и пластического метаболизма клеток в условиях гипоксии и при улучшении оксигенации [32]. Выяснилось, что в процессе накопления липидных капель активное участие принимают белки пероксисом, в частности peroxine 14, PMP70 и PPARα, повышенная экспрессия которых коррелирует со степенью злокачественности опухоли [33]. Ингибирование синтеза ЖК или бета-окисления ЖК снижает как активность пролиферации клеток глиомы [23, 34], так и активность нормальных нервных стволовых клеток [35, 36]. Подобный двойной метаболический путь обеспечивает энергию и сырье для роста опухолевых клеток и является критически важным в процессе канцерогенеза в злокачественных глиальных новообразованиях.
ЖК, синтезированные внутриклеточно или полученные из кровотока, могут быть использованы для выработки энергии посредством митохондриального и пероксисомального бета-окисления, пополняя субстраты цикла Кребса. Они также играют важную роль в анаболических внутриклеточных процессах, являясь субстратом для синтеза фосфолипидов, входящих в состав плазматических мембран, и растворимых глицерофосфолипидов, действующих как вторичные мессенджеры — компоненты сигнальных каскадов. ЖК становятся источником для выработки паракринных сигнальных молекул (например, эндоканнабиноидов и эйкозаноидов), активирующих синтез различных стероидных гормонов через мевалонатный путь*, весьма активный в клетках глиобластомы [37]. ЖК могут выполнять роль кофактора для образования липидных капель в гипоксических условиях [32]. Кроме того, они могут облегчать посттрансляционные модификации (например, пальмитоилирование) проонкогенных мембранных белков и белковых комплексов [38].
Таким образом, ЖК играют разнообразную и важную роль в функции опухолевых клеток в глиомах. Практически все вышеперечисленные липидные молекулы, связанные с ЖК, служат маркерами при диагностике глиом с помощью метода масс-спектрометрии в различных его модификациях [18]. Тем не менее влияние ряда важнейших генетических, молекулярно-биологических факторов канцерогенеза на уровень и особенности липидного метаболизма исследовано недостаточно.
Современные возможности масс-спектрометрии в нейроонкологии
В опубликованной в 2010 г. пионерской работе L. Eberlin и соавт. [14] было показано, что использование методики DESI позволяет получить характеристические профили липидов (в частности, структурных сфинго- и глицерофосфолипидов), на основе которых возможна молекулярная дифференциация астроцитарных глиом различных степеней злокачественности. В ней был предложен подход, который можно применить для идентификации глиом при помощи молекулярного профилирования методом DESI MS с дальнейшим применением многофакторного статистического анализа и машинного обучения. В этом исследовании с помощью метода DESI MS проводили измерение липидных профилей 36 образцов глиом человека, включая олигодендроглиому, астроцитому и олигоастроцитому. Были определены специфические молекулярные паттерны интактного серого и белого вещества с целью дифференцировки его с тканью глиальных опухолей. На основе липидных спектров были созданы классификационные критерии для экспресс-определения опухолевой и мозговой ткани. Диагностические показатели в образцах опухолей, выявленные с помощью масс-спектрометрии, совпадали с экспертной диагностической оценкой патологов для 79% тестируемых признаков [18].
Аналогичные результаты были получены и отечественными учеными. Был разработан метод, позволяющий быстро (в течение нескольких секунд) получать масс-спектры образцов малого размера (~1 мм3) [16]. Измеряемые таким методом масс-спектры содержат данные о липидном профиле исследуемого образца. Верификация данных проводилась путем идентификации липидов с использованием их точных молекулярных масс, анализа фрагментов ионов этих липидов и распределения интенсивностей изотопных пиков в масс-спектре. Было показано, что с использованием разработанного метода в каждом образце можно идентифицировать широкий набор липидов, включающий в себя липиды, идентифицированные ранее другими лабораториями. По идентифицированным липидам была составлена база данных липидных профилей, соответствующих разным типам опухолей головного мозга. База данных сравнивалась с имеющимися аналогичными базами данных других коллективов, работающих в области молекулярного профилирования опухолей головного мозга [14]. Уровень совпадения данных, получаемых разными группами, достаточно высок, например, в базе данных российской группы и базе данных, описанной в исследовании L. Eberlin и соавт. [14], пересечение идентификаций составило около 50%. Расхождение в 50% идентификаций можно объяснить различием в методах микроэкстракции и ионизации, используемых разными группами, а также гетерогенностью и биологической вариабельностью образцов. Тем не менее результаты измерений являются воспроизводимыми, что позволяет использовать метод для создания классификаторов тканей по масс-спектру смеси экстрагированных из ткани веществ [15, 16].
Е. Жванский и соавт. [15], исследовавшие данным методом биоптаты глиобластомы, показали, что метод анализа липидных профилей может быть положен в основу подхода к анализу состава гетерогенного образца опухолевой ткани, включающей клетки интактной или некротической ткани. В результате такого анализа были разработаны классификационные критерии для определения наличия в образце различных типов ткани, прежде всего интактной мозговой и опухолевой. Были получены также предварительные результаты, свидетельствующие о различиях профилей в масс-спектрах разных гистологических типов опухолей при использовании предложенных методов классификации. Таким образом, для практического применения методов прямой масс-спектрометрии и прямой экстракции липидов из тканей требуется разработка специальных алгоритмов для анализа спектров. Этой же группой авторов [17] предложен алгоритм, предназначенный для анализа данных прямой масс-спектрометрии для определения физических границ опухолевой ткани.
Полученные авторами результаты хорошо согласуются с результатами работы L. Eberlin и соавт. [19], которые продемонстрировали высокую достоверность классификатора, построенного при помощи липидных профилей, для образцов олигодендроглиом, астроцитом и менингиом разных гистологических типов и степеней злокачественности. Диагноз, основанный на данных о молекулярном профиле опухоли, полученном с помощью масс-спектрометрии, соответствовал результатам традиционного гистологического анализа (микроскопия срезов после окраски гематоксилином и эозином) во всех образцах. Проводилась оценка различий между опухолями разных гистологических типов, а также имеющихся различий в зависимости от степени злокачественности внутри одного типа новообразований. Результаты масс-спектрометрического профилирования опухолей были сопоставлены с предоперационной МРТ благодаря применению интраоперационной нейронавигации.
Интересным и актуальным в наши дни представляется вопрос взаимосвязи вышеуказанных метаболических параметров, определяемых с помощью масс-спектро-метрии, и наиболее принципиальных молекулярно-биологических особенностей опухолевых клеток. Наиболее важными факторами нам представляются мутации в гене IDH1 и активность атипических изоформ протеинкиназы C (ПКС), поскольку они — мутация IDH1 в качестве первичного генетического звена, а атипические ПКC в качестве главных плейотропных эффекторов — вовлечены во все аспекты жизнедеятельности опухолевой клетки (катаболический, анаболический, генетический и эпигенетический процесс), будучи важнейшими модуляторами канцерогенеза.
Роль мутаций в генах IDH в канцерогенезе и их связь с липидным метаболизмом
Ферменты семейства изоцитратдегидрогеназы представлены в трех изоформах, находящихся как в цитоплазме (IDH1), так и во внутриклеточных компартментах ‒ пероксисомах и митохондриях (IDH2, IDH3) [39]. Все они участвуют в процессах окислительного фосфорилирования — превращения изоцитрата в альфа-кетоглутарат (прямая и обратная реакции), причем IDH3 катализирует этот процесс в рамках цикла трикарбоновых кислот только в прямом направлении, в результате чего образуется 2-оксоглутарат [40, 41].
Работы по картированию генов изоцитратдегидрогеназы были начаты еще в 70-е годы. В 1985 г. K. Narahara и соавт. [42] установили, что ген IDH1 лоцирован на коротком плече 2-й хромосомы (локус 2q33.3), а в 1996 г. T. Huh и соавт. [43] показали, что ген IDH2 расположен на коротком плече 15-й хромосомы (локус 15q26.1). Интересно, что IDH3, будучи гетеротетрамерным комплексом, кодируется несколькими генами — IDH3A, расположенными на коротком плече 15-й хромосомы (локус 15q25.1–q25.2), IDH3B на длинном плече 20-й хромосомы (локус 20p13) и IDH3G на коротком плече Х-хромосомы (локус Xq28) [41, 43—46].
Мутации в генах IDH носят характер соматических, гетерозиготных, точечных мутаций в активных центрах ферментов, причем для IDH1 все мутации с заменой аргинина возникают в 132-м кодоне (аrg132), а для IDH2 в 140-м или 172-м кодонах (аrg140, arg172) [39, 47]. Интересно, что эти мутации встречаются только в гетерозиготном состоянии и связаны с увеличением активности фермента. Таким образом, мутантные формы IDH1 и IDH2 приводят к образованию из альфакетоглутарата D-2-дезоксиглутарата, избыток которого в свою очередь приводит к подавлению альфакетоглутарат-зависимых диоксигеназ, участвующих в репарации ДНК, деметилировании гистонов [48]. Все это приводит к тому, что в мутантных клетках возникает гиперметилирование гистонов и ДНК (особенно в ее участках с большим содержанием островков CpG), которое в свою очередь реализует эпигенетические эффекты с опухолевой трансформацией клеток [49—51]. Некоторые авторы [41] полагают, что моно- или биаллельные мутации в гене IDH3 не активируют канцерогенез, а наоборот, за счет торможения цикла трикарбоновых кислот приводят к подавлению продукции АТФ в митохондриях и апоптозу.
Мутации IDH в клетках глиом
По данным D. Krell и соавт. [52], мутация в гене IDH1 встречается приблизительно в 70% глиом Grade II—III и первичных глиобластом и лишь в 5% вторичных глиобластом. Мутация гена IDH2 в глиомах Grade II—III вв.стречается реже. В последние годы было показано, что мутации генов IDH1 и IDH2 являются прогностическими факторами замедленной прогрессии опухоли и увеличения общей выживаемости пациентов [53—55]. Мутационный статус IDH1 и IDH2 является на сегодняшний день одной из главных прогностических и диагностических характеристик астроцитом, широко используемой в новой классификации опухолей нервной системы ВОЗ [56]. Данные особенности мутировавших опухолей изучены недостаточно. Было показано, что мутация аллелей гена IDH1 или IDH2 приводит к масштабным изменениям различных компонентов канцерогенеза. Так, в клетках, несущих данную мутацию, возникает гиперпродукция 2-гидроксиглутарата, приводящая к значительным перестройкам в эпигенетической регуляции активности генома: исследование эпигенома большого набора промежуточного класса глиом продемонстрировало наличие значительного гиперметилирования ряда участков генома. Введение мутантного аллеля гена IDH1 в культуру человеческих астроцитов изменяет паттерны специфического метилирования и ацетилирования гистонов, индуцирует обширное гиперметилирование ДНК и перестраивает метилом пораженных клеток, делая его похожим на метилом клеток глиом с более низкой степенью злокачественности [57]. Кроме того, эпигеномные изменения, возникающие в результате мутации IDH1, приводят к инактивации некоторых протоонкогенов. В это же время наблюдается и эпигенетическая стимуляция ряда механизмов, способствующих некоторой дестабилизации генома клетки [58].
Важную роль играют и генетические изменения, возникающие вследствие мутации генов IDH1 и IDH2. В ряде работ было [59] выявлено как активирующее, так и инактивирующее влияние мутации IDH на различные протоонкогены, такие как PIK3CA, KRAS, AKT, N-MYC и др. Также была показана роль IDH-генов в активации процессов ангиогенеза, играющего существенную роль в процессе прогрессирования и инвазии опухоли [60].
Недавно были получены интересные данные о взаимосвязи мутаций IDH1 и IDH2 с изменениями в процессах репарации ДНК опухолевых клеток. Выяснилось, что повышенная продукция 2-гидроксиглутарата (2HG), индуцированная IDH-мутациями, приводит к значительному снижению активности процессов гомологичной рекомбинации, являющимся одним из ключевых факторов восстановления нативной структуры генома и представляющим собой важнейший компонент естественной антионкогенной внутриклеточной защиты. Таким образом, мутации IDH1 и IDH2 приводят к снижению активности механизмов антионкогенной защиты и росту нестабильности генома [61, 62].
Опубликованы новые данные, раскрывающие наличие и характер взаимосвязи содержания 2HG и уровня липидного метаболизма в опухолевых клетках. В недавнем исследовании [30] был обнаружен необычный путь синтеза липидов, в котором углерод из глюкозы используется для продукции в митохондриях альфа-кетоглутарата (АКГ), транспортируемого затем в цитозоль и служащего субстратом для восстановительного карбоксилирования изоцитратдегидрогеназой 1 (IDH1). Образовавшийся цитрат расщепляется с синтезом липогенного ацетил-СоА, тем самым завершая новый путь глюкозозависимого восстановительного карбоксилирования. В клетках с ингибированием нормального действия IDH1 нарушается синтез липидов из глюкозы или глютамина, что говорит о необходимости наличия немутированного аллеля IDH1 как важнейшего компонента синтеза жирных кислот в опухолевых клетках [63]. Данное исследование демонстрирует прямую взаимосвязь мутации гена IDH1 с липидным обменом, при этом влияние данной мутации на липидные спектры опухолей различной степени злокачественности остается пока малоизученным.
Роль атипических изоформ протеинкиназы C в канцерогенезе и липидном метаболизме
Протеинкиназы класса C представляют собой ключевые элементы ряда пролиферативных каскадов. К членам данного семейства относятся такие протеинкиназы, как ПК ζ, ПК Mζ и ПК С. Данные ферменты обладают необычными свойствами, в частности более высокой, чем у других представителей их класса, каталитической активностью. Стоит заметить также, что ПК Mζ обладает свойством поддержания собственной активности, так как, в отличие от других представителей данного класса, не имеет аутоингибиторных доменов и обладает специальными аутокаталитическими доменами [64].
Ряд членов данного класса белков участвует в развитии опухолевых заболеваний различной локализации. Непосредственная роль в процессах канцерогенеза связана с участием атипических изоформ ПКC в процессах пролиферации и роста клеток, а также в изменениях свойств цитоскелета ряда опухолевых клеток и свойств их адгезивности [65, 66].
Значение протеинкиназы Сζ в онкологии
В ряде исследований была показана роль ПКСζ в регуляции роста клеток первичной опухоли и реализации механизмов метастазирования при раке молочной железы, толстой кишки, гепатоцеллюлярной карциномы [67—69].
Роль формы ПКСζ при опухолях головного мозга значительно менее изучена в сравнении с другими локализациями опухолевого процесса. Так, в одном из исследований было показано, что ПКСζ участвует в контроле миграции клеток глиобластомы и их инвазии путем регуляции перестройки цитоскелета, изменения клеточной адгезивности и стимуляции повышенной экспрессии матриксной металлопротеиназы-9 [70]. Также было обнаружено, что активность ПКСζ в клетках глиобластомы во многом связана с системой фактора некроза опухоли (ФНО) и играет важную роль в процессе канцерогенеза [71].
Протеинкиназа Mζ в развитии онкологических заболеваний
Роль протеинкиназы Mζ (ПКMζ) в развитии опухолевых заболеваний исследована далеко не так хорошо и подробно, как роль ее «старшей сестры» ПКСζ, в связи с тем, что выявлена эта форма была не так давно. В одном из немногих исследований выявлено участие данной формы протеинкиназы в развитии острого лимфобластного лейкоза [72]. Исследований роли ПКMζ в развитии глиальных опухолей головного мозга не проводилось. Тем не менее было обнаружено, что ПКMζ вовлекается в процессы пролиферации нейронов при нейрогенезе и может быть вовлечена в пролиферативные каскады в клетках астроцитарной глии [73]. Данные исследования показывают перспективность рассмотрения роли этих протеинкиназ в развитии опухолей головного мозга.
Значение протеинкиназы C в патогенезе опухолей головного мозга
Известно, что высокая активность протеинкиназы С (ПКС) наблюдается в клетках злокачественных опухолей легкого, желудочно-кишечного тракта, яичников и молочной железы [74—78].
В некоторых исследованиях [79] была выявлена роль ПКС в развитии глиобластомы. Эти наблюдения указывают на то, что этот фермент может оказаться удачной мишенью для действия терапевтических ингибиторов [80, 81]. В то же время исследований, выявляющих участие ПКС в патогенезе различных видов глиальных опухолей, а также в глиальных опухолях различной степени злокачественности, не проводилось.
Роль атипических изоформ ПКС в канцерогенезе в аспекте липидного обмена
Согласно многочисленным исследованиям, одним из ключевых протоонкогенных факторов, синтезируемых из липидов, является вторичный мессенджер диацилглицерол, появление которого в среде приводит к активации митоген-активируемых протеинкиназ (MAPK-каскада), играющих важнейшую роль в процессах деления клеток. Одним из важнейших эффекторов MAPK-каскада, обусловливающим основное его воздействие на пролиферативную активность, является ПКСζ. Именно ее активация обеспечивает функционирование митогенного пути, запускаемого через рецепторы тромбоцитарного фактора роста, который в свою очередь является одним из ключевых триггеров опухолевого роста в глиомах [82]. Кроме того, было показано, что ПКСζ, ПКСΙ и ПКСΛ являются важнейшими факторами, регулирующими синтез ряда ЖК и липидных производных, служащих индикаторными метаболитами опухолевой трансформации клеток при проведении масс-спектрометрического исследования [83, 84]. Различные изоферменты ПКС способны дифференциально активироваться липидами, что имеет особое значение для процесса канцерогенеза [85]. Таким образом, атипические изоформы ПКC являются ключевыми компонентами пути липидного метаболизма клеток, обусловливающими как синтез липидов, так и их функции, принимающие участие в процессе канцерогенеза.
Заключение
Современные технические решения, основанные на передовом опыте физической и химической науки, все шире входят в практику медицины. Масс-спектрометрия — важный инструмент в руках фундаментальной медицины и биологии на протяжении последних десятилетий — сегодня близка к тому, чтобы полноценно войти и в хирургическую практику. Подобный подход, вне всяких сомнений, оправдан и необходим — масс-спектрометрия открывает новые интересные перспективы в быстрой интегральной диагностике различных заболеваний, в том числе интраоперационной. Проблема надежных и в то же время достаточно быстрых методов диагностического поиска в рамках хирургического процесса является очень актуальной в наши дни. Ценность масс-спектрометрического метода для анализа операционного биологического материала может быть очень высока, позволяя с достаточной скоростью и точностью устанавливать важнейшие диагностические параметры, аналогичные таковым, определяемым при классическом гистологическом исследовании.
Тем не менее параметры липидного обмена, индикаторные для масс-спектрометрии, являются лишь метаболическим следствием принципиальных молекулярно-биологических процессов, лежащих в основе развития опухоли. Поэтому наиболее важной представляется проблема установления взаимосвязи основных молекулярно-биологических параметров опухоли с параметрами липидного обмена, определяемыми при проведении масс-спектрометрического анализа новообразования.
Анализ литературы показал, что мутации в генах IDH1 и IDH2 являются одними из важнейших генетических факторов, влияющих на процессы канцерогенеза глиом. Определяющая роль данных мутаций в установлении прогноза и биологических характеристик глиальных опухолей обусловлена наличием плейотропных эффектов на большинство ключевых внутриклеточных звеньев онкопрогрессии. Наличие мутаций в генах IDH1 и IDH2 приводит к изменению активности протоонкогенов, гиперметилированию ДНК, глобальным переменам в эпигенетической регуляции функционирования генома и модификации системы генетической репарации. В то же время продукт мутантного гена оказывает прямой эффект на синтез ряда липидов. Таким образом, мутации в генах IDH1 и IDH2 выраженно изменяют параметры липидного обмена как опосредованно, при помощи модификации глобальных внутриклеточных процессов, так и напрямую, влияя на синтез липидных метаболитов.
Главным исполнительным звеном в реализации эффектов не только мутации изоформ генов IDH1 и IDH2, но и других генетических и эпигенетических модификаций генома опухолевых клеток, вполне вероятно, являются атипические изоформы ПКC. Белки данного класса по своим функциональным возможностям и эффектам полностью соответствуют плейотропности действий вышеописанных мутаций генов IDH1 и IDH2 — их влияние на внутриклеточный метаболизм и функциональный статус глобальных регуляторных систем также многообразно. Ключевая роль в пролиферативных каскадах, регуляция активности протоонкогенов, влияние на адгезивность клеток и регуляция различных видов обмена — вот лишь часть функциональной многогранности данных ферментов. В целом влияние атипических изоформ ПКC на параметры липидного метаболизма также выглядит двойственно — имеет место сочетание прямого и косвенного вмешательства активности данных белков в липидный обмен.
Таким образом, мутации в генах IDH1 и IDH2 и экспрессия атипических изоформ ПКC имеют как прямое, так и опосредованное влияние на основные параметры липидного метаболизма. Для непрямой экспресс-диагностики этих мутаций могут быть успешно использованы масс-спектрометрические методы.
Авторы заявляют об отсутствии конфликта интересов.
*e-mail: vash.nsi@gmail.com
*Мевалонатный путь — один из важнейших метаболических путей в клетках эукариот, приводящий к образованию из молекул ацетил-КоА двух предшественников класса терпеноидов — изопентилпирофосфата и диметилаллилпирофосфата. Эти соединения в дальнейшем участвуют в образовании различных биомолекул — холестерина, гема, витамина К, стероидных гормонов.