Текучева С.В.

ФГБУ НМИЦ «Центральный научно-исследовательский институт стоматологии и челюстно-лицевой хирургии» Минздрава России

Лосев Ф.Ф.

ФГБУ НМИЦ «Центральный научно-исследовательский институт стоматологии и челюстно-лицевой хирургии» Минздрава России

Надточий А.Г.

ФГБУ НМИЦ «Центральный научно-исследовательский институт стоматологии и челюстно-лицевой хирургии» Минздрава России

Ермольев С.Н.

ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России

Фокина А.А.

ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России

Ультразвуковая анатомия жевательных мышц. (Экспериментально-клиническое исследование)

Авторы:

Текучева С.В., Лосев Ф.Ф., Надточий А.Г., Ермольев С.Н., Фокина А.А.

Подробнее об авторах

Журнал: Стоматология. 2023;102(6‑2): 44‑50

Просмотров: 1463

Загрузок: 44


Как цитировать:

Текучева С.В., Лосев Ф.Ф., Надточий А.Г., Ермольев С.Н., Фокина А.А. Ультразвуковая анатомия жевательных мышц. (Экспериментально-клиническое исследование). Стоматология. 2023;102(6‑2):44‑50.
Tekucheva SV, Losev FF, Nadtochiy AG, Ermolyev SN, Fokina AA. Ultrasound anatomy of masticatory muscles. (Experimental and clinical study). Stomatology. 2023;102(6‑2):44‑50. (In Russ.)
https://doi.org/10.17116/stomat202310206244

Рекомендуем статьи по данной теме:
Струк­тур­но-фун­кци­ональ­ное сос­то­яние щи­то­вид­ной же­ле­зы у де­тей и под­рос­тков с гнез­дной ало­пе­ци­ей по дан­ным ла­бо­ра­тор­но­го и ультраз­ву­ко­во­го об­сле­до­ва­ния. Кли­ни­чес­кая дер­ма­то­ло­гия и ве­не­ро­ло­гия. 2024;(2):214-220
Как из­ме­ня­ет­ся уро­вень гре­ли­на у па­ци­ен­тов, пе­ре­нес­ших ба­ри­ат­ри­чес­кие вме­ша­тельства. Хи­рур­гия. Жур­нал им. Н.И. Пи­ро­го­ва. 2024;(4):49-54
Мо­де­ли­ро­ва­ние и про­фи­лак­ти­ка пос­ле­опе­ра­ци­он­ных спа­ек в ги­не­ко­ло­ги­чес­кой и та­зо­вой хи­рур­гии в эк­спе­ри­мен­те: мор­фо­ло­ги­чес­кие и ультрас­трук­тур­ные осо­бен­нос­ти. Проб­ле­мы реп­ро­дук­ции. 2024;(2):42-50
Ана­то­ми­чес­кое стро­ение и мор­фо­мет­ри­чес­кие по­ка­за­те­ли вер­ти­каль­но­го от­де­ла сле­зо­от­во­дя­щих пу­тей. Вес­тник оф­таль­мо­ло­гии. 2024;(2-2):143-149
Воз­мож­нос­ти ми­ни­маль­но ин­ва­зив­ных вме­ша­тельств в ле­че­нии ос­лож­не­ний, свя­зан­ных с внут­риб­рюш­ны­ми кон­кре­мен­та­ми пос­ле ви­де­ола­па­рос­ко­пи­чес­кой хо­ле­цис­тэк­то­мии. Хи­рур­гия. Жур­нал им. Н.И. Пи­ро­го­ва. 2024;(5):14-20
Ком­прес­си­он­ная элас­тог­ра­фия как но­вый ме­тод ультраз­ву­ко­вой ви­зу­али­за­ции в диф­фе­рен­ци­аль­ной ди­аг­нос­ти­ке хро­ни­чес­ко­го тон­зил­ли­та. Вес­тник ото­ри­но­ла­рин­го­ло­гии. 2024;(4):20-25
Ультраз­ву­ко­вая ди­аг­нос­ти­ка па­ра­тон­зил­ляр­но­го аб­сцес­са: пре­иму­щес­тва и не­дос­тат­ки. Вес­тник ото­ри­но­ла­рин­го­ло­гии. 2024;(4):81-85
Эк­спе­ри­мен­таль­ная хи­рур­гия в ву­зе: тра­ди­ции, ин­но­ва­ции, пер­спек­ти­вы. Опе­ра­тив­ная хи­рур­гия и кли­ни­чес­кая ана­то­мия (Пи­ро­гов­ский на­уч­ный жур­нал). 2024;(3):22-27
Ана­то­ми­чес­кие осо­бен­нос­ти и воз­рас­тные из­ме­не­ния вер­хних век у пред­ста­ви­те­лей ази­ат­ских на­ро­дов. Плас­ти­чес­кая хи­рур­гия и эс­те­ти­чес­кая ме­ди­ци­на. 2024;(4):65-76
Воз­мож­нос­ти ав­то­ма­ти­зи­ро­ван­ной не­ин­ва­зив­ной ди­аг­нос­ти­ки но­во­об­ра­зо­ва­ний ко­жи пе­ри­ор­би­таль­ной об­лас­ти. Вес­тник оф­таль­мо­ло­гии. 2024;(5):137-145

Жевательные мышцы играют важную роль в развитии и функционировании зубочелюстно-лицевой системы, что подтверждено многочисленными исследованиями [1—4]. Немецкий анатом Ю. Вольф утверждал, что при изменении внешних сил, в том числе тонуса мышц, действующих на кость, происходит изменение формы костей. Это положение принято называть законом Вольфа [3, 5, 6]. Согласно теории функциональной матрицы М. Мосса, на рост костей лицевого скелета и челюстей существенное влияние оказывают «функциональные потребности» окружающих мягких тканей [1, 2]. Жевательная нагрузка является важным фактором в формировании зубов, архитектонике костей лицевого скелета, стимулирует обменные процессы в кости [7]. Челюстные кости и кости лицевого скелета имеют выраженную резистентность к кратковременным силовым нагрузкам, однако они могут изменяться при долгосрочных воздействиях слабых сил, которые оказывают жевательные и мимические мышцы [4].

Современный подход при планировании стоматологического лечения предполагает комплексную диагностику, включающую морфофункциональную оценку состояния жевательных мышц. Для этого используются методы лучевой диагностики — ультразвуковое исследование (УЗИ), компьютерная томография, магнитно-резонансная томография) и методы функциональной диагностики (электромиография, миотонометрия).

Следует отметить, что УЗИ позволяет получить информацию о толщине и структуре жевательных мышц не только в покое, но и при напряжении (например, при изометрическом напряжении — сокращении), то есть позволяет оценить функциональное состояние мышц в режиме реального времени [8—14].

Оптимизация методов анализа ультразвуковых изображений жевательных мышц является важной задачей, поскольку позволит более углубленно изучить связь между состоянием мышц, а также будет способствовать повышению качества диагностики и лечения пациентов с различными стоматологическими заболеваниями.

Цель исследования — описать ультразвуковую анатомию жевательных мышц на основании сопоставления результатов макроскопического и ультразвукового исследований жевательных мышц in vitro с применением авторских методов анализа эхограмм.

Материал и методы

В экспериментальной части исследовали макропрепарат жевательной мышцы (m. masseter) нежвачного парнокопытного млекопитающего вида «Свинья домашняя» — Sus scrofa domestica (рис. 1).

Рис. 1. Фотография нативного препарата жевательной мышцы экспериментального животного.

Для проведения макроскопического исследования выполнили макросъемку препарата зеркальным фотоаппаратом Nikon D90 с макрообъективом и биполярной вспышкой. Ультразвуковое исследование проводили с помощью ультразвукового аппарата Logic Scan 128 двумя линейными датчиками: HL 10.0/25/96 Z и HL 9.0/40/128 Z (рис. 2).

Рис. 2. Проведение УЗИ препарата жевательной мышцы при помощи линейного датчика HL 10.0/25/96 Z.

Ультразвуковое исследование изучаемых объектов базируется на принципе эхолокации [8, 15, 16]. Ткани организма имеют различную акустическую плотность, поэтому они отображаются на мониторе в виде различных оттенков серого цвета соответственно шкале, которая предусматривает 5 градаций эхогенности: высокую, повышенную, среднюю, пониженную и низкую [17]. При этом структуры высокой эхогенности иногда называют гиперэхогенными, пониженной эхогенности — гипоэхогенными, низкой — анэхогенными (рис. 3).

Рис. 3. Эхограмма жевательной мышцы.

1 — высокая эхогенность; 2 —повышенная эхогенность; 3 — средняя эхогенность; 4 — пониженная эхогенность; 5 — низкая эхогенность.

После получения ультразвуковых изображений жевательной мышцы проводилась их качественная и количественная оценка. Качественная оценка выполнялась за счет визуального сопоставления макроскопической и ультразвуковой картин жевательных мышц на основании полученных фотографий и ультразвуковых изображений. Количественная оценка включала в себя анализ эхоструктуры (совокупность участков различной эхогенности, составляющих картину жевательной мышцы на ультразвуковом изображении) и толщины мышц. Оценивали площадь изображения мышцы и определяли процентное соотношение в ней гипер/гипо/анэхогенных участков.

По методике количественной оценки, описанной в патенте №2765775, ультразвуковое изображение сохранялось и загружалось в программу Adobe Photoshop, где выделяли участки различной эхогенности жевательных мышц на эхограмме по серой шкале (рис. 4, а). С помощью гистограммы определялась площадь выделенной области (рис. 4, б). Подобный алгоритм повторялся для каждого значения серой шкалы. Полученные результаты вносились в таблицу для последующего сравнения площади участков различной эхогенности.

Рис. 4. Выделение гиперэхогенных участков на ультрасонограмме (а) и гистограмме (б).

Измерение толщины мышцы проводилось от наружной до внутренней фасции в четырех и более областях ультразвукового изображения мышцы. В окончательных расчетах использовалось среднее значение (рис. 5).

Рис. 5. Измерение толщины мышцы на ультразвуковом изображении в 4 областях в программе Echo Wave II.

Предложенная методика компьютерной количественной оценки ультразвуковых изображений жевательных мышц осуществлялась в разработанной нами программе ProMVision (свидетельство на регистрацию программы для ЭВМ №2023612589). В программе производилось автоматическое сегментирование изображения жевательной мышцы по 5 спектрам эхогенности серой шкалы, преобразованной в цветную шкалу методом колорирования, расчет их площадей (в мм2) и процентного соотношения (в %) каждого спектра эхогенности в выделенной зоне интереса изображения жевательной мышцы, а также расчет линейных параметров изображения (поперечная толщина жевательной мышцы (в мм) (табл. 1).

Таблица 1. Распределение зон эхогенности на УЗ изображении жевательной мышцы

Зона

Цветное изображение

Преобразование и соответствие цвета

% и (мм2) исследуемой зоны

Анэхогенная зона

17,84 и (114,63)

Гипоэхогенная зона

42,56 и (273,48)

Изоэхогенная зона

26,86 и (172,6)

Зона повышенной

эхогенности

10,94 и (70,29)

Гиперэхогенная зона

1,75% 11,23 мм2

Для каждой выделяемой зоны в автоматическом режиме генерировался график пиксельного спектрального распределения, где по шкале X указаны пиксели, а по шкале Y обозначается процент пикселей в этой области исследуемой зоны (рис. 6).

Рис. 6. Пример графика пиксельного спектрального распределения в анэхогенной зоне, который отражает процент выраженности изучаемой зоны на пиксельном фоне изображения.

На обобщенном итоговом УЗ изображении жевательной мышцы автоматически выделялись все зоны эхогенности (100%), производился расчет общей площади (мм2) и максимальная, минимальная и среднестатистическая толщина (мм) исследуемой мышцы.

Результаты и обсуждение

В результате качественной оценки кадаверного материала было выявлено, что жевательная мышца на ультразвуковом изображении имеет исчерченную структуру. На фоне гипоэхогенной мышечной ткани определяются гиперэхогенные участки соединительнотканных структур (эндо- и перимизия), а также кортикального слоя кости ветви нижней челюсти, наружной и внутренней фасций мышцы (рис. 7, а, б).

Рис. 7. Сопоставление макроскопического препарата (фотография) (а) и ультразвукового изображения (б) жевательной мышцы экспериментального животного.

1 — гипоэхогенная мышечная ткань; 2 — гиперэхогенные участки соединительно-тканных септ внутри мышцы; 3 — гиперэхогенный слой кортикальной пластинки ветви нижней челюсти; 4 — акустическая тень от поверхности кости; 5 — наружняя фасция; 6 — внутренняя фасция.

Клинический пример

Обследование пациента с нормальной окклюзией, подписавшего информированное добровольное согласие на проведение УЗИ жевательных мышц, показало следующие результаты (табл. 2).

Таблица 2. Результаты оценки эхоструктуры УЗ-изображений жевательных мышц у пациента с нормальной окклюзией

Сторона

Проба

Общая площадь, мм2 , зона, %

Толщина, мм

Физиологический покой

558,72

Превалирует гипоэхогенная зона — 43,76

14

Правая

Максимальное волевое смыкание зубных рядов

668,8

Превалирует гипоэхогенная зона — 45

17

Левая

Физиологический покой

525,61

Превалирует гипоэхогенная зона — 44,81

13

Максимальное волевое смыкание зубных рядов

686,57

Превалирует гипоэхогенная зона — 45,27

18

У обследованного пациента с нормальной окклюзией в покое и при максимальном волевом смыкании зубных рядов (сокращенном состоянии мышцы) толщина жевательных мышц справа и слева отличалась на 1 мм. При сокращении толщина мышцы справа увеличилась на 5 мм, слева — на 3 мм. В изученных жевательных мышцах как в покое, так и в сокращенном состоянии превалировали гипоэхогенные участки, в то время как площадь анэхогенных участков была в два раза меньше. Наименьший процент от общей площади занимала гиперэхогенная зона (рис. 8).

Рис. 8. Процентное соотношение зон эхогенности.

а — правая сторона, физиологический покой; б — правая сторона, максимальное волевое смыкание зубных рядов; в — левая сторона, физиологический покой; г — левая сторона, максимальное волевое смыкание зубных рядов. Примечание: анэхогенная зона — красный цвет, гипоэхогенная зона — желтый цвет, зона средней эхогенности — зеленый цвет, зона повышенной эхогенности — синий цвет, гиперэхогенная зона— фиолетовый цвет.

Заключение

Результаты экспериментального исследования позволили определить эхоанатомию жевательной мышцы на ультразвуковом изображении. С помощью разработанных методов количественной оценки ультразвуковых изображений нами выявлены особенности эхоструктуры жевательных мышц.

УЗИ позволяет с высокой степенью достоверности визуализировать мышцы и судить об особенностях их строения. Неинвазивность и безвредность УЗИ дает возможность проводить обследование с применением данного метода многократно для мониторинга изменений, происходящих в челюстно-лицевой области при стоматологическом лечении, а также оценивать эффективность его результатов. УЗИ позволяет выявить индивидуальные структурные особенности жевательных мышц, а также более рационально подойти к применению таких исследований, как компьютерная и магнитно-резонансная томография, что особенно актуально при обследовании детей.

Описание нормированных показателей в отношении ультразвуковой анатомии жевательных мышц позволит применять их в качестве отправных при обследовании пациентов с различными стоматологическими заболеваниями, тем самым изучая особенности их семиотики.

Предлагаемые авторами методы компьютерного анализа эхограмм с интеграцией элементов технологий искусственного интеллекта предназначены для улучшения визуальной оценки, а также автоматического вычисления линейных параметров и эхоструктуры УЗ изображений жевательных мышцы. Это, в свою очередь, объективизирует анализ эхограмм мышц и оптимизирует интерпретацию получаемых результатов.

Последующие исследования необходимы для выявления особенностей структуры жевательных мышц у пациентов с патологическими состояниями жевательных мышц и дисфункцией ВНЧС, а также для определения их связи с формированием зубочелюстных аномалий.

Планируется дальнейшее изучение возможностей использования УЗИ мышц челюстно-лицевой области в практике врача-стоматолога для повышения качества диагностики пациентов с различными стоматологическими заболеваниями, в том числе донозологической.

Авторы заявляют об отсутствии конфликта интересов.

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.